面向工业环境的云端室内外实时定位物联网架构

Laura Belli, Luca Davoli, Gianluigi Ferrari
{"title":"面向工业环境的云端室内外实时定位物联网架构","authors":"Laura Belli, Luca Davoli, Gianluigi Ferrari","doi":"10.1109/CCNC51664.2024.10454636","DOIUrl":null,"url":null,"abstract":"Localization services for precise and continuous monitoring of the locations of both humans and vehicles in industrial environments are among the most relevant applications in Industrial Internet of Things (IIoT) contexts, to maximize safety and optimize operational activities. Unfortunately, localization in industrial scenarios is particularly challenging because targets can generally move freely in both indoor and outdoor areas. In this paper, we propose a localization monitoring architecture based on a prototypical wearable IoT device equipped with Ultra-Wide Band (UWB), inertial, and GNSS/RTK technologies for seamless localization in heterogeneous environments. We focus on a Web of Things (WoT) approach, verifying suitability and limitations in a real use case scenario. Our approach shows that the proposed architecture can effectively enhance the safety of workers, detecting potentially dangerous events and triggering alarms (e.g., via smart buzzers or gas concentration warning devices) based on a cloud WoT architecture.","PeriodicalId":518411,"journal":{"name":"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)","volume":"64 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Cloud-Oriented Indoor-Outdoor Real-Time Localization IoT Architecture for Industrial Environments\",\"authors\":\"Laura Belli, Luca Davoli, Gianluigi Ferrari\",\"doi\":\"10.1109/CCNC51664.2024.10454636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Localization services for precise and continuous monitoring of the locations of both humans and vehicles in industrial environments are among the most relevant applications in Industrial Internet of Things (IIoT) contexts, to maximize safety and optimize operational activities. Unfortunately, localization in industrial scenarios is particularly challenging because targets can generally move freely in both indoor and outdoor areas. In this paper, we propose a localization monitoring architecture based on a prototypical wearable IoT device equipped with Ultra-Wide Band (UWB), inertial, and GNSS/RTK technologies for seamless localization in heterogeneous environments. We focus on a Web of Things (WoT) approach, verifying suitability and limitations in a real use case scenario. Our approach shows that the proposed architecture can effectively enhance the safety of workers, detecting potentially dangerous events and triggering alarms (e.g., via smart buzzers or gas concentration warning devices) based on a cloud WoT architecture.\",\"PeriodicalId\":518411,\"journal\":{\"name\":\"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)\",\"volume\":\"64 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCNC51664.2024.10454636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCNC51664.2024.10454636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在工业物联网(IIoT)背景下,为最大限度地提高安全性和优化运营活动,对工业环境中人和车辆的位置进行精确和持续监控的定位服务是最相关的应用之一。遗憾的是,工业场景中的定位尤其具有挑战性,因为目标通常可以在室内和室外自由移动。在本文中,我们提出了一种基于原型可穿戴物联网设备的定位监控架构,该设备配备了超宽带 (UWB)、惯性和 GNSS/RTK 技术,可在异构环境中实现无缝定位。我们将重点放在物联网(WoT)方法上,在实际使用场景中验证其适用性和局限性。我们的方法表明,基于云 WoT 架构,建议的架构可有效提高工人的安全性,检测潜在的危险事件并触发警报(例如,通过智能蜂鸣器或气体浓度警告装置)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Cloud-Oriented Indoor-Outdoor Real-Time Localization IoT Architecture for Industrial Environments
Localization services for precise and continuous monitoring of the locations of both humans and vehicles in industrial environments are among the most relevant applications in Industrial Internet of Things (IIoT) contexts, to maximize safety and optimize operational activities. Unfortunately, localization in industrial scenarios is particularly challenging because targets can generally move freely in both indoor and outdoor areas. In this paper, we propose a localization monitoring architecture based on a prototypical wearable IoT device equipped with Ultra-Wide Band (UWB), inertial, and GNSS/RTK technologies for seamless localization in heterogeneous environments. We focus on a Web of Things (WoT) approach, verifying suitability and limitations in a real use case scenario. Our approach shows that the proposed architecture can effectively enhance the safety of workers, detecting potentially dangerous events and triggering alarms (e.g., via smart buzzers or gas concentration warning devices) based on a cloud WoT architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Transparency in Email Security Distance-Statistical Based Byzantine-Robust Algorithms in Federated Learning Natively Secure 6G IoT Using Intelligent Physical Layer Security Accessibility of Mobile User Interfaces using Flutter and React Native Resource-Aware Service Prioritization in a Slice-Supportive 5G Core Control Plane for Improved Resilience and Sustenance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1