ACADEME: 6G 无线网络中的空中蜂窝辅助设备边缘硬币选取模式(Aerial Cell-Assisted Device-Edge coinference ModEl in 6G Wireless Network

T. Vrind, Chandar Kumar, Debabrata Das
{"title":"ACADEME: 6G 无线网络中的空中蜂窝辅助设备边缘硬币选取模式(Aerial Cell-Assisted Device-Edge coinference ModEl in 6G Wireless Network","authors":"T. Vrind, Chandar Kumar, Debabrata Das","doi":"10.1109/CCNC51664.2024.10454698","DOIUrl":null,"url":null,"abstract":"In the 6G wireless network, there may be a communication architecture with three levels of systems: user equipment (UE), non-terrestrial aerial low altitude platform (LAP), and terrestrial base station with mobile edge computing (MEC). Co-inference is the intelligent sharing of the multiple computing layers in the AI/ML model amongst the UE, LAP, and MEC. Computing, storage, and power shared between the above systems for co-inference will bring several system-level advantages. Furthermore, it optimizes the required data traffic bandwidth, energy consumption, and end-to-end latency. The available literature has analyzed the optimal split point of the AI/ML model between UE and MEC (one wireless link). However, to the best of our knowledge, there is no study on the AI/ML split model in the case of UE, LAP, and MEC architectures with two wireless links (UE to LAP and LAP to MEC). In this paper, for the first time, we propose a novel device-edge co-inference with a LAP-based aerial cell having computing power. We present a novel Aerial Cell-Assisted Device-Edge co-inference ModEl (ACADEME) algorithm that optimally assigns layers to compute to UE, LAP, and MEC according to two wireless link characteristics to minimize power consumption and latency of inference. Through mathematical modelling and simulations, we show that the proposed coinference substantially reduces latency, i.e., by 47% through the selection of the two optimal split points of the AI/ML model, one each at the UE and the LAP-based aerial cell, respectively.","PeriodicalId":518411,"journal":{"name":"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)","volume":"70 3","pages":"1006-1009"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ACADEME: Aerial Cell-Assisted Device-Edge coinference ModEl in 6G Wireless Network\",\"authors\":\"T. Vrind, Chandar Kumar, Debabrata Das\",\"doi\":\"10.1109/CCNC51664.2024.10454698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the 6G wireless network, there may be a communication architecture with three levels of systems: user equipment (UE), non-terrestrial aerial low altitude platform (LAP), and terrestrial base station with mobile edge computing (MEC). Co-inference is the intelligent sharing of the multiple computing layers in the AI/ML model amongst the UE, LAP, and MEC. Computing, storage, and power shared between the above systems for co-inference will bring several system-level advantages. Furthermore, it optimizes the required data traffic bandwidth, energy consumption, and end-to-end latency. The available literature has analyzed the optimal split point of the AI/ML model between UE and MEC (one wireless link). However, to the best of our knowledge, there is no study on the AI/ML split model in the case of UE, LAP, and MEC architectures with two wireless links (UE to LAP and LAP to MEC). In this paper, for the first time, we propose a novel device-edge co-inference with a LAP-based aerial cell having computing power. We present a novel Aerial Cell-Assisted Device-Edge co-inference ModEl (ACADEME) algorithm that optimally assigns layers to compute to UE, LAP, and MEC according to two wireless link characteristics to minimize power consumption and latency of inference. Through mathematical modelling and simulations, we show that the proposed coinference substantially reduces latency, i.e., by 47% through the selection of the two optimal split points of the AI/ML model, one each at the UE and the LAP-based aerial cell, respectively.\",\"PeriodicalId\":518411,\"journal\":{\"name\":\"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)\",\"volume\":\"70 3\",\"pages\":\"1006-1009\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCNC51664.2024.10454698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCNC51664.2024.10454698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在 6G 无线网络中,通信架构可能包含三个层次的系统:用户设备(UE)、非地面空中低空平台(LAP)和带有移动边缘计算(MEC)的地面基站。协同干涉是指 UE、LAP 和 MEC 之间智能共享 AI/ML 模型中的多个计算层。上述系统之间共享计算、存储和电源以进行协同干涉将带来多个系统级优势。此外,它还能优化所需的数据流量带宽、能耗和端到端延迟。现有文献分析了 AI/ML 模型在 UE 和 MEC(一条无线链路)之间的最佳分割点。然而,据我们所知,目前还没有关于 UE、LAP 和 MEC 架构中两个无线链路(UE 至 LAP 和 LAP 至 MEC)的 AI/ML 分离模型的研究。在本文中,我们首次提出了一种新型的设备边缘协同干扰,它基于具有计算能力的 LAP 空中小区。我们提出了一种新型的空中小区辅助设备边缘协同干扰模式(ACADEME)算法,该算法可根据两种无线链路特性为 UE、LAP 和 MEC 分配最佳计算层,以最大限度地降低功耗和推理延迟。通过数学建模和仿真,我们发现所提出的协同推理通过选择 AI/ML 模型的两个最佳分割点(分别位于 UE 和基于 LAP 的空中小区),大大减少了延迟,即减少了 47%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ACADEME: Aerial Cell-Assisted Device-Edge coinference ModEl in 6G Wireless Network
In the 6G wireless network, there may be a communication architecture with three levels of systems: user equipment (UE), non-terrestrial aerial low altitude platform (LAP), and terrestrial base station with mobile edge computing (MEC). Co-inference is the intelligent sharing of the multiple computing layers in the AI/ML model amongst the UE, LAP, and MEC. Computing, storage, and power shared between the above systems for co-inference will bring several system-level advantages. Furthermore, it optimizes the required data traffic bandwidth, energy consumption, and end-to-end latency. The available literature has analyzed the optimal split point of the AI/ML model between UE and MEC (one wireless link). However, to the best of our knowledge, there is no study on the AI/ML split model in the case of UE, LAP, and MEC architectures with two wireless links (UE to LAP and LAP to MEC). In this paper, for the first time, we propose a novel device-edge co-inference with a LAP-based aerial cell having computing power. We present a novel Aerial Cell-Assisted Device-Edge co-inference ModEl (ACADEME) algorithm that optimally assigns layers to compute to UE, LAP, and MEC according to two wireless link characteristics to minimize power consumption and latency of inference. Through mathematical modelling and simulations, we show that the proposed coinference substantially reduces latency, i.e., by 47% through the selection of the two optimal split points of the AI/ML model, one each at the UE and the LAP-based aerial cell, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Transparency in Email Security Distance-Statistical Based Byzantine-Robust Algorithms in Federated Learning Natively Secure 6G IoT Using Intelligent Physical Layer Security Accessibility of Mobile User Interfaces using Flutter and React Native Resource-Aware Service Prioritization in a Slice-Supportive 5G Core Control Plane for Improved Resilience and Sustenance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1