{"title":"无人机互联网轻量级聚合认证协议","authors":"Image Bhattarai, Cong Pu, Kim–Kwang Raymond Choo","doi":"10.1109/CCNC51664.2024.10454703","DOIUrl":null,"url":null,"abstract":"The Internet of Drones (IoD), an innovative aerial-ground communication architecture, has quickly became the driving force for various civilian applications (e.g., body temperature detecting drones during the global pandemic of coronavirus disease). In the IoD, a fleet of drones are deployed over an area of interest, collect task-specific data, and then deliver them to the ground station for further data exploration and analysis. To fully exploit the potential of IoD in today's dynamic and evolving cyber-threat environment, the security and efficiency challenges existing in the IoD communications should be well addressed. Some researchers have developed security mechanisms to enable the authentication between the ground station and the drones in the IoD systems. Nonetheless, those schemes mainly focus on the security aspect but overlook the importance of communication efficiency to the resource-constrained drones. In order to fill this research gap, this paper proposes a lightweight aggregate authentication scheme (hereafter referred to as liteAGAP) to tackle the challenges of communication security and efficiency together. Specifically, liteAGAP utilizes cryptographic primitives such as physical unclonable function and bilinear pairing to efficiently secure the data exchange between the ground station and a group of drones in the IoD systems. To evaluate its security performance, liteAGAP is first implemented in the security-sensitive protocol modeling language. Then, we analyze and verify liteAGAP using AVISPA, which is a well-known Internet security protocol verification framework. We also implement liteAGAP and its counterpart schemes in a simulation environment, where the simulation-based experiments are conducted to obtain the results of communication overhead, running time, memory storage usage, and energy consumption. According to the results of security verification/analysis and performance evaluation, we conclude that not only liteAGAP meets the expected security requirements, but also provides superior performance compared to the existing schemes.","PeriodicalId":518411,"journal":{"name":"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)","volume":"68 3","pages":"143-151"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lightweight Aggregate Authentication Protocol for Internet of Drones\",\"authors\":\"Image Bhattarai, Cong Pu, Kim–Kwang Raymond Choo\",\"doi\":\"10.1109/CCNC51664.2024.10454703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of Drones (IoD), an innovative aerial-ground communication architecture, has quickly became the driving force for various civilian applications (e.g., body temperature detecting drones during the global pandemic of coronavirus disease). In the IoD, a fleet of drones are deployed over an area of interest, collect task-specific data, and then deliver them to the ground station for further data exploration and analysis. To fully exploit the potential of IoD in today's dynamic and evolving cyber-threat environment, the security and efficiency challenges existing in the IoD communications should be well addressed. Some researchers have developed security mechanisms to enable the authentication between the ground station and the drones in the IoD systems. Nonetheless, those schemes mainly focus on the security aspect but overlook the importance of communication efficiency to the resource-constrained drones. In order to fill this research gap, this paper proposes a lightweight aggregate authentication scheme (hereafter referred to as liteAGAP) to tackle the challenges of communication security and efficiency together. Specifically, liteAGAP utilizes cryptographic primitives such as physical unclonable function and bilinear pairing to efficiently secure the data exchange between the ground station and a group of drones in the IoD systems. To evaluate its security performance, liteAGAP is first implemented in the security-sensitive protocol modeling language. Then, we analyze and verify liteAGAP using AVISPA, which is a well-known Internet security protocol verification framework. We also implement liteAGAP and its counterpart schemes in a simulation environment, where the simulation-based experiments are conducted to obtain the results of communication overhead, running time, memory storage usage, and energy consumption. According to the results of security verification/analysis and performance evaluation, we conclude that not only liteAGAP meets the expected security requirements, but also provides superior performance compared to the existing schemes.\",\"PeriodicalId\":518411,\"journal\":{\"name\":\"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)\",\"volume\":\"68 3\",\"pages\":\"143-151\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCNC51664.2024.10454703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCNC51664.2024.10454703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Lightweight Aggregate Authentication Protocol for Internet of Drones
The Internet of Drones (IoD), an innovative aerial-ground communication architecture, has quickly became the driving force for various civilian applications (e.g., body temperature detecting drones during the global pandemic of coronavirus disease). In the IoD, a fleet of drones are deployed over an area of interest, collect task-specific data, and then deliver them to the ground station for further data exploration and analysis. To fully exploit the potential of IoD in today's dynamic and evolving cyber-threat environment, the security and efficiency challenges existing in the IoD communications should be well addressed. Some researchers have developed security mechanisms to enable the authentication between the ground station and the drones in the IoD systems. Nonetheless, those schemes mainly focus on the security aspect but overlook the importance of communication efficiency to the resource-constrained drones. In order to fill this research gap, this paper proposes a lightweight aggregate authentication scheme (hereafter referred to as liteAGAP) to tackle the challenges of communication security and efficiency together. Specifically, liteAGAP utilizes cryptographic primitives such as physical unclonable function and bilinear pairing to efficiently secure the data exchange between the ground station and a group of drones in the IoD systems. To evaluate its security performance, liteAGAP is first implemented in the security-sensitive protocol modeling language. Then, we analyze and verify liteAGAP using AVISPA, which is a well-known Internet security protocol verification framework. We also implement liteAGAP and its counterpart schemes in a simulation environment, where the simulation-based experiments are conducted to obtain the results of communication overhead, running time, memory storage usage, and energy consumption. According to the results of security verification/analysis and performance evaluation, we conclude that not only liteAGAP meets the expected security requirements, but also provides superior performance compared to the existing schemes.