用于车联网通道状态信息预测的深度强化学习

Xing-fa Liu, Wei Yu, Cheng Qian, David W. Griffith, N. Golmie
{"title":"用于车联网通道状态信息预测的深度强化学习","authors":"Xing-fa Liu, Wei Yu, Cheng Qian, David W. Griffith, N. Golmie","doi":"10.1109/CCNC51664.2024.10454739","DOIUrl":null,"url":null,"abstract":"In this paper, we address the issue of Channel State Information (CSI) prediction of the Internet of Vehicles (loV) system, which is a highly dynamic network environment. We propose a deep reinforcement learning-based approach to predict CSI with historical data and video footage captured by smart cameras. Specifically, we use a Conventional Neural Network (CNN) to extract unique environmental characteristics, which will be sent to a Recurrent Neural Network (RNN)-based learning model so that the future CSI can be predicted. Our approach also considers the heterogeneous nature of IoV communication environments by adopting transfer learning to reduce the training cost when applying our approach to different IoV scenarios. We assess the efficacy of our proposed approach using our designed IoV simulation platform. The experimental results confirm that our approach can accurately predict CSI by using historically generated data.","PeriodicalId":518411,"journal":{"name":"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)","volume":"66 7","pages":"388-391"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Reinforcement Learning for Channel State Information Prediction in Internet of Vehicles\",\"authors\":\"Xing-fa Liu, Wei Yu, Cheng Qian, David W. Griffith, N. Golmie\",\"doi\":\"10.1109/CCNC51664.2024.10454739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the issue of Channel State Information (CSI) prediction of the Internet of Vehicles (loV) system, which is a highly dynamic network environment. We propose a deep reinforcement learning-based approach to predict CSI with historical data and video footage captured by smart cameras. Specifically, we use a Conventional Neural Network (CNN) to extract unique environmental characteristics, which will be sent to a Recurrent Neural Network (RNN)-based learning model so that the future CSI can be predicted. Our approach also considers the heterogeneous nature of IoV communication environments by adopting transfer learning to reduce the training cost when applying our approach to different IoV scenarios. We assess the efficacy of our proposed approach using our designed IoV simulation platform. The experimental results confirm that our approach can accurately predict CSI by using historically generated data.\",\"PeriodicalId\":518411,\"journal\":{\"name\":\"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)\",\"volume\":\"66 7\",\"pages\":\"388-391\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCNC51664.2024.10454739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCNC51664.2024.10454739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们探讨了车联网(loV)系统的信道状态信息(CSI)预测问题,这是一个高度动态的网络环境。我们提出了一种基于深度强化学习的方法,利用历史数据和智能摄像头捕获的视频片段预测 CSI。具体来说,我们使用传统神经网络(CNN)来提取独特的环境特征,并将其发送给基于循环神经网络(RNN)的学习模型,从而预测未来的 CSI。我们的方法还考虑到了物联网通信环境的异质性,在将我们的方法应用于不同物联网场景时,采用迁移学习来降低训练成本。我们利用设计的物联网仿真平台评估了所提方法的功效。实验结果证实,我们的方法可以利用历史生成的数据准确预测 CSI。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Reinforcement Learning for Channel State Information Prediction in Internet of Vehicles
In this paper, we address the issue of Channel State Information (CSI) prediction of the Internet of Vehicles (loV) system, which is a highly dynamic network environment. We propose a deep reinforcement learning-based approach to predict CSI with historical data and video footage captured by smart cameras. Specifically, we use a Conventional Neural Network (CNN) to extract unique environmental characteristics, which will be sent to a Recurrent Neural Network (RNN)-based learning model so that the future CSI can be predicted. Our approach also considers the heterogeneous nature of IoV communication environments by adopting transfer learning to reduce the training cost when applying our approach to different IoV scenarios. We assess the efficacy of our proposed approach using our designed IoV simulation platform. The experimental results confirm that our approach can accurately predict CSI by using historically generated data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Transparency in Email Security Distance-Statistical Based Byzantine-Robust Algorithms in Federated Learning Natively Secure 6G IoT Using Intelligent Physical Layer Security Accessibility of Mobile User Interfaces using Flutter and React Native Resource-Aware Service Prioritization in a Slice-Supportive 5G Core Control Plane for Improved Resilience and Sustenance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1