Ronghao Pan , José Antonio García-Díaz , Miguel Ángel Rodríguez-García , Rafel Valencia-García
{"title":"西班牙语 MEACorpus 2023:用于从自然环境中分析西班牙语情绪的多模态语音-文本语料库","authors":"Ronghao Pan , José Antonio García-Díaz , Miguel Ángel Rodríguez-García , Rafel Valencia-García","doi":"10.1016/j.csi.2024.103856","DOIUrl":null,"url":null,"abstract":"<div><p>In human–computer interaction, emotion recognition provides a deeper understanding of the user’s emotions, enabling empathetic and effective responses based on the user’s emotional state. While deep learning models have improved emotion recognition solutions, it is still an active area of research. One important limitation is that most emotion recognition systems use only text as input, ignoring features such as voice intonation. Another limitation is the limited number of datasets available for multimodal emotion recognition. In addition, most published datasets contain emotions that are simulated by professionals and produce limited results in real-world scenarios. In other languages, such as Spanish, hardly any datasets are available. Therefore, our contributions to emotion recognition are as follows. First, we compile and annotate a new corpus for multimodal emotion recognition in Spanish (Spanish MEACorpus 2023), which contains 13.16 h of speech divided into 5129 segments labeled by considering Ekman’s six basic emotions. The dataset is extracted from YouTube videos in natural environments. Second, we explore several deep learning models for emotion recognition using text- and audio-based features. Third, we evaluate different multimodal techniques to build a multimodal recognition system that improves the results of unimodal models, achieving a Macro F1-score of 87.745%, using late fusion with concatenation strategy approach.</p></div>","PeriodicalId":50635,"journal":{"name":"Computer Standards & Interfaces","volume":"90 ","pages":"Article 103856"},"PeriodicalIF":4.1000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0920548924000254/pdfft?md5=7643b0276c958f1d28a134277313e4d1&pid=1-s2.0-S0920548924000254-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Spanish MEACorpus 2023: A multimodal speech–text corpus for emotion analysis in Spanish from natural environments\",\"authors\":\"Ronghao Pan , José Antonio García-Díaz , Miguel Ángel Rodríguez-García , Rafel Valencia-García\",\"doi\":\"10.1016/j.csi.2024.103856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In human–computer interaction, emotion recognition provides a deeper understanding of the user’s emotions, enabling empathetic and effective responses based on the user’s emotional state. While deep learning models have improved emotion recognition solutions, it is still an active area of research. One important limitation is that most emotion recognition systems use only text as input, ignoring features such as voice intonation. Another limitation is the limited number of datasets available for multimodal emotion recognition. In addition, most published datasets contain emotions that are simulated by professionals and produce limited results in real-world scenarios. In other languages, such as Spanish, hardly any datasets are available. Therefore, our contributions to emotion recognition are as follows. First, we compile and annotate a new corpus for multimodal emotion recognition in Spanish (Spanish MEACorpus 2023), which contains 13.16 h of speech divided into 5129 segments labeled by considering Ekman’s six basic emotions. The dataset is extracted from YouTube videos in natural environments. Second, we explore several deep learning models for emotion recognition using text- and audio-based features. Third, we evaluate different multimodal techniques to build a multimodal recognition system that improves the results of unimodal models, achieving a Macro F1-score of 87.745%, using late fusion with concatenation strategy approach.</p></div>\",\"PeriodicalId\":50635,\"journal\":{\"name\":\"Computer Standards & Interfaces\",\"volume\":\"90 \",\"pages\":\"Article 103856\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0920548924000254/pdfft?md5=7643b0276c958f1d28a134277313e4d1&pid=1-s2.0-S0920548924000254-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Standards & Interfaces\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920548924000254\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Standards & Interfaces","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920548924000254","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Spanish MEACorpus 2023: A multimodal speech–text corpus for emotion analysis in Spanish from natural environments
In human–computer interaction, emotion recognition provides a deeper understanding of the user’s emotions, enabling empathetic and effective responses based on the user’s emotional state. While deep learning models have improved emotion recognition solutions, it is still an active area of research. One important limitation is that most emotion recognition systems use only text as input, ignoring features such as voice intonation. Another limitation is the limited number of datasets available for multimodal emotion recognition. In addition, most published datasets contain emotions that are simulated by professionals and produce limited results in real-world scenarios. In other languages, such as Spanish, hardly any datasets are available. Therefore, our contributions to emotion recognition are as follows. First, we compile and annotate a new corpus for multimodal emotion recognition in Spanish (Spanish MEACorpus 2023), which contains 13.16 h of speech divided into 5129 segments labeled by considering Ekman’s six basic emotions. The dataset is extracted from YouTube videos in natural environments. Second, we explore several deep learning models for emotion recognition using text- and audio-based features. Third, we evaluate different multimodal techniques to build a multimodal recognition system that improves the results of unimodal models, achieving a Macro F1-score of 87.745%, using late fusion with concatenation strategy approach.
期刊介绍:
The quality of software, well-defined interfaces (hardware and software), the process of digitalisation, and accepted standards in these fields are essential for building and exploiting complex computing, communication, multimedia and measuring systems. Standards can simplify the design and construction of individual hardware and software components and help to ensure satisfactory interworking.
Computer Standards & Interfaces is an international journal dealing specifically with these topics.
The journal
• Provides information about activities and progress on the definition of computer standards, software quality, interfaces and methods, at national, European and international levels
• Publishes critical comments on standards and standards activities
• Disseminates user''s experiences and case studies in the application and exploitation of established or emerging standards, interfaces and methods
• Offers a forum for discussion on actual projects, standards, interfaces and methods by recognised experts
• Stimulates relevant research by providing a specialised refereed medium.