{"title":"捕食者气味应激反应、饮酒和内源性大麻素系统","authors":"Laura C. Ornelas , Joyce Besheer","doi":"10.1016/j.ynstr.2024.100634","DOIUrl":null,"url":null,"abstract":"<div><p>Post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) are highly comorbid and individual differences in response to stress suggest resilient and susceptible populations. Using animal models to target neurobiological mechanisms associated with individual variability in stress coping responses and the relationship with subsequent increases in alcohol consumption has important implications for the field of traumatic stress and alcohol disorders. The current review discusses the unique advantages of utilizing predator odor stressor exposure models, specifically using 2,5-dihydro-2,4,5-trimethylthiazoline (TMT) on better understanding PTSD pathophysiology and neurobiological mechanisms associated with stress reactivity and subsequent increases in alcohol drinking. Furthermore, there has been increasing interest regarding the role of the endocannabinoid system in modulating behavioral responses to stress with an emphasis on stress coping and individual differences in stress-susceptibility. Therefore, the current review focuses on the topic of endocannabinoid modulation of stress reactive behaviors during and after exposure to a predator odor stressor, with implications on modulating distinctly different behavioral coping strategies.</p></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352289524000304/pdfft?md5=16a71c61b882ebcace38c109e1ef6837&pid=1-s2.0-S2352289524000304-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Predator odor stress reactivity, alcohol drinking and the endocannabinoid system\",\"authors\":\"Laura C. Ornelas , Joyce Besheer\",\"doi\":\"10.1016/j.ynstr.2024.100634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) are highly comorbid and individual differences in response to stress suggest resilient and susceptible populations. Using animal models to target neurobiological mechanisms associated with individual variability in stress coping responses and the relationship with subsequent increases in alcohol consumption has important implications for the field of traumatic stress and alcohol disorders. The current review discusses the unique advantages of utilizing predator odor stressor exposure models, specifically using 2,5-dihydro-2,4,5-trimethylthiazoline (TMT) on better understanding PTSD pathophysiology and neurobiological mechanisms associated with stress reactivity and subsequent increases in alcohol drinking. Furthermore, there has been increasing interest regarding the role of the endocannabinoid system in modulating behavioral responses to stress with an emphasis on stress coping and individual differences in stress-susceptibility. Therefore, the current review focuses on the topic of endocannabinoid modulation of stress reactive behaviors during and after exposure to a predator odor stressor, with implications on modulating distinctly different behavioral coping strategies.</p></div>\",\"PeriodicalId\":19125,\"journal\":{\"name\":\"Neurobiology of Stress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352289524000304/pdfft?md5=16a71c61b882ebcace38c109e1ef6837&pid=1-s2.0-S2352289524000304-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Stress\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352289524000304\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Stress","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352289524000304","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Predator odor stress reactivity, alcohol drinking and the endocannabinoid system
Post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) are highly comorbid and individual differences in response to stress suggest resilient and susceptible populations. Using animal models to target neurobiological mechanisms associated with individual variability in stress coping responses and the relationship with subsequent increases in alcohol consumption has important implications for the field of traumatic stress and alcohol disorders. The current review discusses the unique advantages of utilizing predator odor stressor exposure models, specifically using 2,5-dihydro-2,4,5-trimethylthiazoline (TMT) on better understanding PTSD pathophysiology and neurobiological mechanisms associated with stress reactivity and subsequent increases in alcohol drinking. Furthermore, there has been increasing interest regarding the role of the endocannabinoid system in modulating behavioral responses to stress with an emphasis on stress coping and individual differences in stress-susceptibility. Therefore, the current review focuses on the topic of endocannabinoid modulation of stress reactive behaviors during and after exposure to a predator odor stressor, with implications on modulating distinctly different behavioral coping strategies.
期刊介绍:
Neurobiology of Stress is a multidisciplinary journal for the publication of original research and review articles on basic, translational and clinical research into stress and related disorders. It will focus on the impact of stress on the brain from cellular to behavioral functions and stress-related neuropsychiatric disorders (such as depression, trauma and anxiety). The translation of basic research findings into real-world applications will be a key aim of the journal.
Basic, translational and clinical research on the following topics as they relate to stress will be covered:
Molecular substrates and cell signaling,
Genetics and epigenetics,
Stress circuitry,
Structural and physiological plasticity,
Developmental Aspects,
Laboratory models of stress,
Neuroinflammation and pathology,
Memory and Cognition,
Motivational Processes,
Fear and Anxiety,
Stress-related neuropsychiatric disorders (including depression, PTSD, substance abuse),
Neuropsychopharmacology.