原始和修改后的 DCGAN 增强新生儿红外数据集中呼吸综合征的检测和分类

S Sarath, Jyothisha J Nair
{"title":"原始和修改后的 DCGAN 增强新生儿红外数据集中呼吸综合征的检测和分类","authors":"S Sarath,&nbsp;Jyothisha J Nair","doi":"10.1016/j.procs.2024.03.232","DOIUrl":null,"url":null,"abstract":"<div><p>In the current pandemic scenarios, a non-invasive method for determining a neonate's respiratory rate and categorizing them using a deep learning technique is highly pertinent. Acquiring an infrared neonatal dataset for detecting and classifying respiratory syndromes is challenging. The limited number of infrared videos and images representing different types of syndromes is a tremendous challenge to the accuracy of the deep learning model. This paper uses the Deep Convolutional Generative Adversarial Networks(DCGAN) with gradient penalty for the data augmentation. The Discriminator in a standard DCGAN architecture is a convolutional neural network (CNN) that receives an image as input and outputs a single scalar value that indicates the likelihood that the input image is real or fake. Adding a gradient penalty adds a regularisation term to the loss function. This modification helps to stabilize training by preventing mode collapse and generating higher-quality images. The augmented dataset helped to make the original imbalanced dataset more balanced and increased the size of the original dataset. When the accuracies of the deep learning models trained on the original and balanced augmented neonatal datasets were compared in this work, the model based on the balanced augmented dataset performed better.</p></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"233 ","pages":"Pages 422-431"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S187705092400591X/pdf?md5=f9462c940ce4aebbd23edbb4db9f4955&pid=1-s2.0-S187705092400591X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Detection and Classification of Respiratory Syndromes in Original and modified DCGAN Augmented Neonatal Infrared Datasets\",\"authors\":\"S Sarath,&nbsp;Jyothisha J Nair\",\"doi\":\"10.1016/j.procs.2024.03.232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the current pandemic scenarios, a non-invasive method for determining a neonate's respiratory rate and categorizing them using a deep learning technique is highly pertinent. Acquiring an infrared neonatal dataset for detecting and classifying respiratory syndromes is challenging. The limited number of infrared videos and images representing different types of syndromes is a tremendous challenge to the accuracy of the deep learning model. This paper uses the Deep Convolutional Generative Adversarial Networks(DCGAN) with gradient penalty for the data augmentation. The Discriminator in a standard DCGAN architecture is a convolutional neural network (CNN) that receives an image as input and outputs a single scalar value that indicates the likelihood that the input image is real or fake. Adding a gradient penalty adds a regularisation term to the loss function. This modification helps to stabilize training by preventing mode collapse and generating higher-quality images. The augmented dataset helped to make the original imbalanced dataset more balanced and increased the size of the original dataset. When the accuracies of the deep learning models trained on the original and balanced augmented neonatal datasets were compared in this work, the model based on the balanced augmented dataset performed better.</p></div>\",\"PeriodicalId\":20465,\"journal\":{\"name\":\"Procedia Computer Science\",\"volume\":\"233 \",\"pages\":\"Pages 422-431\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S187705092400591X/pdf?md5=f9462c940ce4aebbd23edbb4db9f4955&pid=1-s2.0-S187705092400591X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S187705092400591X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187705092400591X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在当前大流行的情况下,使用深度学习技术确定新生儿呼吸频率并对其进行分类的非侵入性方法非常重要。获取用于检测和分类呼吸综合征的新生儿红外数据集具有挑战性。代表不同类型综合征的红外视频和图像数量有限,这对深度学习模型的准确性是一个巨大的挑战。本文使用带有梯度惩罚的深度卷积生成对抗网络(DCGAN)进行数据扩增。标准 DCGAN 架构中的判别器是一个卷积神经网络(CNN),它接收图像作为输入,并输出一个标量值来表示输入图像是真的还是假的。在损失函数中添加梯度罚则可增加正则化项。这种修改通过防止模式崩溃和生成更高质量的图像来稳定训练。增强型数据集有助于使原始的不平衡数据集更加平衡,并增加了原始数据集的规模。在这项工作中,当比较在原始数据集和平衡增强新生儿数据集上训练的深度学习模型的准确度时,基于平衡增强数据集的模型表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection and Classification of Respiratory Syndromes in Original and modified DCGAN Augmented Neonatal Infrared Datasets

In the current pandemic scenarios, a non-invasive method for determining a neonate's respiratory rate and categorizing them using a deep learning technique is highly pertinent. Acquiring an infrared neonatal dataset for detecting and classifying respiratory syndromes is challenging. The limited number of infrared videos and images representing different types of syndromes is a tremendous challenge to the accuracy of the deep learning model. This paper uses the Deep Convolutional Generative Adversarial Networks(DCGAN) with gradient penalty for the data augmentation. The Discriminator in a standard DCGAN architecture is a convolutional neural network (CNN) that receives an image as input and outputs a single scalar value that indicates the likelihood that the input image is real or fake. Adding a gradient penalty adds a regularisation term to the loss function. This modification helps to stabilize training by preventing mode collapse and generating higher-quality images. The augmented dataset helped to make the original imbalanced dataset more balanced and increased the size of the original dataset. When the accuracies of the deep learning models trained on the original and balanced augmented neonatal datasets were compared in this work, the model based on the balanced augmented dataset performed better.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
Circular Supply Chains and Industry 4.0: An Analysis of Interfaces in Brazilian Foodtechs Potentials of the Metaverse for Robotized Applications in Industry 4.0 and Industry 5.0 Preface Preface Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1