优化云计算中的任务调度:增强型最短工作优先算法

Yellamma Pachipala , Kavya Sri Sureddy , A.B.S. Sriya Kaitepalli , Nagalakshmi Pagadala , Sai Satwik Nalabothu , Mihir Iniganti
{"title":"优化云计算中的任务调度:增强型最短工作优先算法","authors":"Yellamma Pachipala ,&nbsp;Kavya Sri Sureddy ,&nbsp;A.B.S. Sriya Kaitepalli ,&nbsp;Nagalakshmi Pagadala ,&nbsp;Sai Satwik Nalabothu ,&nbsp;Mihir Iniganti","doi":"10.1016/j.procs.2024.03.250","DOIUrl":null,"url":null,"abstract":"<div><p>In the dynamic landscape of cloud computing, efficient task scheduling plays a pivotal role in optimizing resource utilization and enhancing overall system performance. This research introduces a groundbreaking approach to task scheduling in cloud environments through the implementation of a novel Modified Shortest Job First (SJF) algorithm within the CloudSim simulation framework. The primary objectives of this study are to address existing challenges in traditional scheduling algorithms, mitigate resource bottlenecks, reduce task completion times, and improve overall system efficiency.</p></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"233 ","pages":"Pages 604-613"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1877050924006094/pdf?md5=9a01da0d1655f7d40859e50449358a4f&pid=1-s2.0-S1877050924006094-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimizing Task Scheduling in Cloud Computing: An Enhanced Shortest Job First Algorithm\",\"authors\":\"Yellamma Pachipala ,&nbsp;Kavya Sri Sureddy ,&nbsp;A.B.S. Sriya Kaitepalli ,&nbsp;Nagalakshmi Pagadala ,&nbsp;Sai Satwik Nalabothu ,&nbsp;Mihir Iniganti\",\"doi\":\"10.1016/j.procs.2024.03.250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the dynamic landscape of cloud computing, efficient task scheduling plays a pivotal role in optimizing resource utilization and enhancing overall system performance. This research introduces a groundbreaking approach to task scheduling in cloud environments through the implementation of a novel Modified Shortest Job First (SJF) algorithm within the CloudSim simulation framework. The primary objectives of this study are to address existing challenges in traditional scheduling algorithms, mitigate resource bottlenecks, reduce task completion times, and improve overall system efficiency.</p></div>\",\"PeriodicalId\":20465,\"journal\":{\"name\":\"Procedia Computer Science\",\"volume\":\"233 \",\"pages\":\"Pages 604-613\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1877050924006094/pdf?md5=9a01da0d1655f7d40859e50449358a4f&pid=1-s2.0-S1877050924006094-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877050924006094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050924006094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在云计算的动态环境中,高效的任务调度在优化资源利用率和提高系统整体性能方面发挥着举足轻重的作用。本研究通过在 CloudSim 仿真框架内实施新颖的 "修改后最短工作优先(SJF)"算法,为云环境中的任务调度引入了一种突破性方法。本研究的主要目标是解决传统调度算法中存在的挑战,缓解资源瓶颈,缩短任务完成时间,提高整体系统效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing Task Scheduling in Cloud Computing: An Enhanced Shortest Job First Algorithm

In the dynamic landscape of cloud computing, efficient task scheduling plays a pivotal role in optimizing resource utilization and enhancing overall system performance. This research introduces a groundbreaking approach to task scheduling in cloud environments through the implementation of a novel Modified Shortest Job First (SJF) algorithm within the CloudSim simulation framework. The primary objectives of this study are to address existing challenges in traditional scheduling algorithms, mitigate resource bottlenecks, reduce task completion times, and improve overall system efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
Circular Supply Chains and Industry 4.0: An Analysis of Interfaces in Brazilian Foodtechs Potentials of the Metaverse for Robotized Applications in Industry 4.0 and Industry 5.0 Preface Preface Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1