{"title":"无组织点数据的二次曲面保存参数化","authors":"Dany Ríos, Felix Scholz, Bert Jüttler","doi":"10.1016/j.cagd.2024.102287","DOIUrl":null,"url":null,"abstract":"<div><p>Finding parameterizations of spatial point data is a fundamental step for surface reconstruction in Computer Aided Geometric Design. Especially the case of unstructured point clouds is challenging and not widely studied. In this work, we show how to parameterize a point cloud by using barycentric coordinates in the parameter domain, with the aim of reproducing the parameterizations provided by quadratic triangular Bézier surfaces. To this end, we train an artificial neural network that predicts suitable barycentric parameters for a fixed number of data points. In a subsequent step we improve the parameterization using non-linear optimization methods. We then use a number of local parameterizations to obtain a global parameterization using a new overdetermined barycentric parameterization approach. We study the behavior of our method numerically in the zero-residual case (i.e., data sampled from quadratic polynomial surfaces) and in the non-zero residual case and observe an improvement of the accuracy in comparison to standard methods. We also compare different approaches for non-linear surface fitting such as tangent distance minimization, squared distance minimization and the Levenberg Marquardt algorithm.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"110 ","pages":"Article 102287"},"PeriodicalIF":1.3000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167839624000219/pdfft?md5=865078c5e76334d3c4faef097f7aefe9&pid=1-s2.0-S0167839624000219-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Quadratic surface preserving parameterization of unorganized point data\",\"authors\":\"Dany Ríos, Felix Scholz, Bert Jüttler\",\"doi\":\"10.1016/j.cagd.2024.102287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Finding parameterizations of spatial point data is a fundamental step for surface reconstruction in Computer Aided Geometric Design. Especially the case of unstructured point clouds is challenging and not widely studied. In this work, we show how to parameterize a point cloud by using barycentric coordinates in the parameter domain, with the aim of reproducing the parameterizations provided by quadratic triangular Bézier surfaces. To this end, we train an artificial neural network that predicts suitable barycentric parameters for a fixed number of data points. In a subsequent step we improve the parameterization using non-linear optimization methods. We then use a number of local parameterizations to obtain a global parameterization using a new overdetermined barycentric parameterization approach. We study the behavior of our method numerically in the zero-residual case (i.e., data sampled from quadratic polynomial surfaces) and in the non-zero residual case and observe an improvement of the accuracy in comparison to standard methods. We also compare different approaches for non-linear surface fitting such as tangent distance minimization, squared distance minimization and the Levenberg Marquardt algorithm.</p></div>\",\"PeriodicalId\":55226,\"journal\":{\"name\":\"Computer Aided Geometric Design\",\"volume\":\"110 \",\"pages\":\"Article 102287\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167839624000219/pdfft?md5=865078c5e76334d3c4faef097f7aefe9&pid=1-s2.0-S0167839624000219-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Aided Geometric Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167839624000219\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839624000219","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Quadratic surface preserving parameterization of unorganized point data
Finding parameterizations of spatial point data is a fundamental step for surface reconstruction in Computer Aided Geometric Design. Especially the case of unstructured point clouds is challenging and not widely studied. In this work, we show how to parameterize a point cloud by using barycentric coordinates in the parameter domain, with the aim of reproducing the parameterizations provided by quadratic triangular Bézier surfaces. To this end, we train an artificial neural network that predicts suitable barycentric parameters for a fixed number of data points. In a subsequent step we improve the parameterization using non-linear optimization methods. We then use a number of local parameterizations to obtain a global parameterization using a new overdetermined barycentric parameterization approach. We study the behavior of our method numerically in the zero-residual case (i.e., data sampled from quadratic polynomial surfaces) and in the non-zero residual case and observe an improvement of the accuracy in comparison to standard methods. We also compare different approaches for non-linear surface fitting such as tangent distance minimization, squared distance minimization and the Levenberg Marquardt algorithm.
期刊介绍:
The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following:
-Mathematical and Geometric Foundations-
Curve, Surface, and Volume generation-
CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision-
Industrial, medical, and scientific applications.
The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.