{"title":"短讯:祁连山2022/2023水文年高温干旱引发的极端冰川质量损失","authors":"JiZu Chen , XingYu Xue , WenTao Du","doi":"10.1016/j.rcar.2024.01.002","DOIUrl":null,"url":null,"abstract":"<div><p>In the hydrological year 2022/2023, the glaciers in the Qilian Mountains experienced unprecedented mass loss. The glacier-wide mass balance was −1,188 mm w.e., in contrast to −350 mm of average mass balance since 1990 over the Bailanghe Glacier No. 12 in the middle of Qilian Mountains. The temperature during 2022–2023 reached the highest value ever recorded, second only to 2022, while at the same time the precipitation amount was less compared to other year since 2000, which together led to the strongest glacier mass loss during 2022–2023. The atmospheric circulation analysis shows that the high temperature in the Qilian Mountains in 2023 was jointly caused by the Arctic air mass and East Asian monsoon.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2097158324000028/pdfft?md5=cae711d37fb46c07ebd46cb8cc441338&pid=1-s2.0-S2097158324000028-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Short communication: Extreme glacier mass loss triggered by high temperature and drought during hydrological year 2022 / 2023 in Qilian Mountains\",\"authors\":\"JiZu Chen , XingYu Xue , WenTao Du\",\"doi\":\"10.1016/j.rcar.2024.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the hydrological year 2022/2023, the glaciers in the Qilian Mountains experienced unprecedented mass loss. The glacier-wide mass balance was −1,188 mm w.e., in contrast to −350 mm of average mass balance since 1990 over the Bailanghe Glacier No. 12 in the middle of Qilian Mountains. The temperature during 2022–2023 reached the highest value ever recorded, second only to 2022, while at the same time the precipitation amount was less compared to other year since 2000, which together led to the strongest glacier mass loss during 2022–2023. The atmospheric circulation analysis shows that the high temperature in the Qilian Mountains in 2023 was jointly caused by the Arctic air mass and East Asian monsoon.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2097158324000028/pdfft?md5=cae711d37fb46c07ebd46cb8cc441338&pid=1-s2.0-S2097158324000028-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2097158324000028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2097158324000028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Short communication: Extreme glacier mass loss triggered by high temperature and drought during hydrological year 2022 / 2023 in Qilian Mountains
In the hydrological year 2022/2023, the glaciers in the Qilian Mountains experienced unprecedented mass loss. The glacier-wide mass balance was −1,188 mm w.e., in contrast to −350 mm of average mass balance since 1990 over the Bailanghe Glacier No. 12 in the middle of Qilian Mountains. The temperature during 2022–2023 reached the highest value ever recorded, second only to 2022, while at the same time the precipitation amount was less compared to other year since 2000, which together led to the strongest glacier mass loss during 2022–2023. The atmospheric circulation analysis shows that the high temperature in the Qilian Mountains in 2023 was jointly caused by the Arctic air mass and East Asian monsoon.