异质环境中的趋化:分散聚集越过障碍物的多机器人模型

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-04-09 DOI:10.1016/j.jtbi.2024.111820
Daniele Proverbio
{"title":"异质环境中的趋化:分散聚集越过障碍物的多机器人模型","authors":"Daniele Proverbio","doi":"10.1016/j.jtbi.2024.111820","DOIUrl":null,"url":null,"abstract":"<div><p>Chemotaxis, cell migration in response to chemical gradients, is known to promote self-organization of microbiological populations. However, the modeling of chemotaxis in heterogeneous environments is still limited. This study analyzes a decentralized gathering process in environments with physical as well as chemical barriers, using a multi-agent model for <em>Disctyostelium discoideum</em> colonies. Employing a topology-independent metric to quantify the system evolution, we study dynamical features emerging from complex social interactions. The results show that obstacles may hamper the gathering process by altering the flux of chemical signals among amoebas, acting as local topological perturbations. We also find that a minimal set of agent’s rules for robust gathering does not require explicit mechanisms for obstacle sensing and avoidance; moreover, random cell movements concur in preventing multiple stable clusters and improve the gathering efficacy. Hence, we speculate that chemotactic cells can avoid obstacles without needing specialized mechanisms: tradeoffs of social interactions and individual fluctuations are sufficient to guarantee the aggregation of the whole colony past numerous obstacles.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemotaxis in heterogeneous environments: A multi-agent model of decentralized gathering past obstacles\",\"authors\":\"Daniele Proverbio\",\"doi\":\"10.1016/j.jtbi.2024.111820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chemotaxis, cell migration in response to chemical gradients, is known to promote self-organization of microbiological populations. However, the modeling of chemotaxis in heterogeneous environments is still limited. This study analyzes a decentralized gathering process in environments with physical as well as chemical barriers, using a multi-agent model for <em>Disctyostelium discoideum</em> colonies. Employing a topology-independent metric to quantify the system evolution, we study dynamical features emerging from complex social interactions. The results show that obstacles may hamper the gathering process by altering the flux of chemical signals among amoebas, acting as local topological perturbations. We also find that a minimal set of agent’s rules for robust gathering does not require explicit mechanisms for obstacle sensing and avoidance; moreover, random cell movements concur in preventing multiple stable clusters and improve the gathering efficacy. Hence, we speculate that chemotactic cells can avoid obstacles without needing specialized mechanisms: tradeoffs of social interactions and individual fluctuations are sufficient to guarantee the aggregation of the whole colony past numerous obstacles.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022519324001012\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324001012","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,趋化作用(细胞随化学梯度迁移)可促进微生物种群的自组织。然而,对异质环境中趋化作用的建模仍然有限。本研究利用盘状肉芽肿(Disctyostelium discoideum)菌落的多代理模型,分析了在具有物理和化学障碍的环境中的分散聚集过程。我们采用与拓扑无关的指标来量化系统演化,研究复杂社会互动中出现的动态特征。结果表明,障碍物可能会通过改变变形虫之间的化学信号通量来阻碍聚集过程,起到局部拓扑扰动的作用。我们还发现,一套用于稳健聚集的最小代理规则并不需要明确的障碍物感知和规避机制;此外,细胞的随机运动可以防止多个稳定的集群,并提高聚集效率。因此,我们推测趋化细胞不需要专门的机制就能避开障碍物:社会互动和个体波动的权衡足以保证整个集群聚集越过众多障碍物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chemotaxis in heterogeneous environments: A multi-agent model of decentralized gathering past obstacles

Chemotaxis, cell migration in response to chemical gradients, is known to promote self-organization of microbiological populations. However, the modeling of chemotaxis in heterogeneous environments is still limited. This study analyzes a decentralized gathering process in environments with physical as well as chemical barriers, using a multi-agent model for Disctyostelium discoideum colonies. Employing a topology-independent metric to quantify the system evolution, we study dynamical features emerging from complex social interactions. The results show that obstacles may hamper the gathering process by altering the flux of chemical signals among amoebas, acting as local topological perturbations. We also find that a minimal set of agent’s rules for robust gathering does not require explicit mechanisms for obstacle sensing and avoidance; moreover, random cell movements concur in preventing multiple stable clusters and improve the gathering efficacy. Hence, we speculate that chemotactic cells can avoid obstacles without needing specialized mechanisms: tradeoffs of social interactions and individual fluctuations are sufficient to guarantee the aggregation of the whole colony past numerous obstacles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1