减少搜索空间的预处理:反馈顶点集的鹿角结构

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE Journal of Computer and System Sciences Pub Date : 2024-03-28 DOI:10.1016/j.jcss.2024.103532
Huib Donkers, Bart M.P. Jansen
{"title":"减少搜索空间的预处理:反馈顶点集的鹿角结构","authors":"Huib Donkers,&nbsp;Bart M.P. Jansen","doi":"10.1016/j.jcss.2024.103532","DOIUrl":null,"url":null,"abstract":"<div><p>The goal of this paper is to open up a new research direction aimed at understanding the power of preprocessing in speeding up algorithms that solve NP-hard problems exactly. We explore this direction for the classic <span>Feedback Vertex Set</span> problem on undirected graphs, leading to a new type of graph structure called <em>antler decomposition</em>, which identifies vertices that belong to an optimal solution. It is an analogue of the celebrated <em>crown decomposition</em> which has been used for <span>Vertex Cover</span>. We develop the graph structure theory around such decompositions and develop fixed-parameter tractable algorithms to find them, parameterized by the number of vertices for which they witness presence in an optimal solution. This reduces the search space of fixed-parameter tractable algorithms parameterized by the solution size that solve <span>Feedback Vertex Set</span>.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"144 ","pages":"Article 103532"},"PeriodicalIF":1.1000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022000024000278/pdfft?md5=2d8e7a91708f0a0fee2cda8d00eb9d75&pid=1-s2.0-S0022000024000278-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Preprocessing to reduce the search space: Antler structures for feedback vertex set\",\"authors\":\"Huib Donkers,&nbsp;Bart M.P. Jansen\",\"doi\":\"10.1016/j.jcss.2024.103532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The goal of this paper is to open up a new research direction aimed at understanding the power of preprocessing in speeding up algorithms that solve NP-hard problems exactly. We explore this direction for the classic <span>Feedback Vertex Set</span> problem on undirected graphs, leading to a new type of graph structure called <em>antler decomposition</em>, which identifies vertices that belong to an optimal solution. It is an analogue of the celebrated <em>crown decomposition</em> which has been used for <span>Vertex Cover</span>. We develop the graph structure theory around such decompositions and develop fixed-parameter tractable algorithms to find them, parameterized by the number of vertices for which they witness presence in an optimal solution. This reduces the search space of fixed-parameter tractable algorithms parameterized by the solution size that solve <span>Feedback Vertex Set</span>.</p></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"144 \",\"pages\":\"Article 103532\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022000024000278/pdfft?md5=2d8e7a91708f0a0fee2cda8d00eb9d75&pid=1-s2.0-S0022000024000278-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000024000278\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000024000278","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

本文的目标是开辟一个新的研究方向,旨在了解预处理在加速精确解决 NP 难问题的算法方面的威力。我们针对无向图上的经典反馈顶点集问题探索了这一方向,从而提出了一种名为鹿角分解的新型图结构,它能识别属于最优解的顶点。鹿角分解是著名的冠分解的类似物,曾用于顶点覆盖问题。我们围绕这种分解发展了图结构理论,并开发了固定参数的可操作性算法来寻找这种分解,其参数为最佳解中存在的顶点数量。这就缩小了以求解反馈顶点集的解大小为参数的固定参数可扩展算法的搜索空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preprocessing to reduce the search space: Antler structures for feedback vertex set

The goal of this paper is to open up a new research direction aimed at understanding the power of preprocessing in speeding up algorithms that solve NP-hard problems exactly. We explore this direction for the classic Feedback Vertex Set problem on undirected graphs, leading to a new type of graph structure called antler decomposition, which identifies vertices that belong to an optimal solution. It is an analogue of the celebrated crown decomposition which has been used for Vertex Cover. We develop the graph structure theory around such decompositions and develop fixed-parameter tractable algorithms to find them, parameterized by the number of vertices for which they witness presence in an optimal solution. This reduces the search space of fixed-parameter tractable algorithms parameterized by the solution size that solve Feedback Vertex Set.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
期刊最新文献
Embedding hypercubes into torus and Cartesian product of paths and/or cycles for minimizing wirelength Algorithms and Turing kernels for detecting and counting small patterns in unit disk graphs Backwards-reachability for cooperating multi-pushdown systems On computing optimal temporal branchings and spanning subgraphs Parameterized results on acyclic matchings with implications for related problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1