{"title":"浪涌-海啸联合动力学:葡萄牙海岸飓风莱斯利的数值模型","authors":"Jihwan Kim , Rachid Omira","doi":"10.1016/j.ocemod.2024.102368","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, Portugal's coastal regions have experienced an increase in the frequency and intensity of severe weather events, including tropical cyclones and extratropical storms. This paper presents an analysis of Hurricane Leslie(2018)'s impact on Portugal, with a specific focus on the complex and often underestimated meteotsunami phenomena accompanying the storm system. Our analysis examines data collected from multiple sources, and employs advanced numerical simulations, integrated within the GeoClaw framework. These simulations encompass both storm surge and meteotsunami effects. One of the findings is the significant role played by meteotsunamis in amplifying coastal sea levels during extreme weather events. The observed sea-level fluctuations closely align with the combined surge-meteotsunami simulations, emphasizing the importance of considering these high-frequency phenomena in coastal hazard assessments.</p></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"189 ","pages":"Article 102368"},"PeriodicalIF":3.1000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1463500324000556/pdfft?md5=5743e7cd98efdb3459a76a3f896cade7&pid=1-s2.0-S1463500324000556-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Combined surge-meteotsunami dynamics: A numerical model for hurricane Leslie on the coast of Portugal\",\"authors\":\"Jihwan Kim , Rachid Omira\",\"doi\":\"10.1016/j.ocemod.2024.102368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, Portugal's coastal regions have experienced an increase in the frequency and intensity of severe weather events, including tropical cyclones and extratropical storms. This paper presents an analysis of Hurricane Leslie(2018)'s impact on Portugal, with a specific focus on the complex and often underestimated meteotsunami phenomena accompanying the storm system. Our analysis examines data collected from multiple sources, and employs advanced numerical simulations, integrated within the GeoClaw framework. These simulations encompass both storm surge and meteotsunami effects. One of the findings is the significant role played by meteotsunamis in amplifying coastal sea levels during extreme weather events. The observed sea-level fluctuations closely align with the combined surge-meteotsunami simulations, emphasizing the importance of considering these high-frequency phenomena in coastal hazard assessments.</p></div>\",\"PeriodicalId\":19457,\"journal\":{\"name\":\"Ocean Modelling\",\"volume\":\"189 \",\"pages\":\"Article 102368\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1463500324000556/pdfft?md5=5743e7cd98efdb3459a76a3f896cade7&pid=1-s2.0-S1463500324000556-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Modelling\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1463500324000556\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500324000556","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Combined surge-meteotsunami dynamics: A numerical model for hurricane Leslie on the coast of Portugal
In recent years, Portugal's coastal regions have experienced an increase in the frequency and intensity of severe weather events, including tropical cyclones and extratropical storms. This paper presents an analysis of Hurricane Leslie(2018)'s impact on Portugal, with a specific focus on the complex and often underestimated meteotsunami phenomena accompanying the storm system. Our analysis examines data collected from multiple sources, and employs advanced numerical simulations, integrated within the GeoClaw framework. These simulations encompass both storm surge and meteotsunami effects. One of the findings is the significant role played by meteotsunamis in amplifying coastal sea levels during extreme weather events. The observed sea-level fluctuations closely align with the combined surge-meteotsunami simulations, emphasizing the importance of considering these high-frequency phenomena in coastal hazard assessments.
期刊介绍:
The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.