Wen Chen , Zhicheng Zhu , Chen Liu , Fan Yang , Wei Dai , Hao Yu , Dian Huang , Wanli Cheng , Zongze Shao , Kashif ur Rehman , Jibin Zhang
{"title":"将多克敦氏病毒 MCCC 1A00493 作为生物防治剂和微生物有机肥料对根结线虫进行评估","authors":"Wen Chen , Zhicheng Zhu , Chen Liu , Fan Yang , Wei Dai , Hao Yu , Dian Huang , Wanli Cheng , Zongze Shao , Kashif ur Rehman , Jibin Zhang","doi":"10.1016/j.biocontrol.2024.105508","DOIUrl":null,"url":null,"abstract":"<div><p>Root-knot nematodes (RKNs) can result in severe losses to crop production and economies. <em>Virgibacillus dokdonensis</em> MCCC 1A00493, a deep-sea bacterium, has demonstrated potent antagonistic effects against <em>Meloidogyne incognita in vitro</em>. However, the control efficacy under greenhouse and field conditions remains unclear. In this study, we investigated the nematicidal effect of MCCC 1A00493 fermentation liquid and its synergism with black soldier fly (BSF) larval frass organic fertilizer both in greenhouse and field experiments. MCCC 1A00493 fermentation liquid demonstrated a significant control efficacy on RKNs both in greenhouse and field experiments, with the highest control efficacy reaching 68.97 % and 74.87 %, respectively. Meanwhile, the synergistic effects of MCCC 1A00493 and BSF larvae frass organic fertilizer was investigated by adding 10 % suspension (1 × 10<sup>9</sup> CFU/mL) of MCCC 1A00493 into 71.51 kg of chicken manure organic fertilizer produced by co-conversion of BSF larvae and <em>Bacillus subtilis</em> BSF-CL. It was noted that MCCC 1A00493 microbial organic fertilizer reduced disease incidence of RKNs significantly both in greenhouse and field experiments, with the root gall index decreasing by 51.75 % and 63.22 %, respectively. MCCC 1A00493 fermentation liquid and microbial organic fertilizer demonstrated a control efficacy on RKNs exceeded commercial nematicide avermectin and commercial bio-organic fertilizer, respectively. In addition, MCCC 1A00493 fermentation liquid and microbial organic fertilizer had positive effects on the growth of tomato plants. These findings confirmed that <em>V.dokdonensis</em> MCCC 1A00493 as a biological control agent and microbial organic fertilizer have significant effect on RKNs and can be used as potential biocontrol preparations.</p></div>","PeriodicalId":8880,"journal":{"name":"Biological Control","volume":"192 ","pages":"Article 105508"},"PeriodicalIF":3.7000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1049964424000732/pdfft?md5=51a631363bc37d7fd52a75f52b3f5c41&pid=1-s2.0-S1049964424000732-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Virgibacillus dokdonensis MCCC 1A00493 as a biological control agent and microbial organic fertilizer against root-knot nematodes\",\"authors\":\"Wen Chen , Zhicheng Zhu , Chen Liu , Fan Yang , Wei Dai , Hao Yu , Dian Huang , Wanli Cheng , Zongze Shao , Kashif ur Rehman , Jibin Zhang\",\"doi\":\"10.1016/j.biocontrol.2024.105508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Root-knot nematodes (RKNs) can result in severe losses to crop production and economies. <em>Virgibacillus dokdonensis</em> MCCC 1A00493, a deep-sea bacterium, has demonstrated potent antagonistic effects against <em>Meloidogyne incognita in vitro</em>. However, the control efficacy under greenhouse and field conditions remains unclear. In this study, we investigated the nematicidal effect of MCCC 1A00493 fermentation liquid and its synergism with black soldier fly (BSF) larval frass organic fertilizer both in greenhouse and field experiments. MCCC 1A00493 fermentation liquid demonstrated a significant control efficacy on RKNs both in greenhouse and field experiments, with the highest control efficacy reaching 68.97 % and 74.87 %, respectively. Meanwhile, the synergistic effects of MCCC 1A00493 and BSF larvae frass organic fertilizer was investigated by adding 10 % suspension (1 × 10<sup>9</sup> CFU/mL) of MCCC 1A00493 into 71.51 kg of chicken manure organic fertilizer produced by co-conversion of BSF larvae and <em>Bacillus subtilis</em> BSF-CL. It was noted that MCCC 1A00493 microbial organic fertilizer reduced disease incidence of RKNs significantly both in greenhouse and field experiments, with the root gall index decreasing by 51.75 % and 63.22 %, respectively. MCCC 1A00493 fermentation liquid and microbial organic fertilizer demonstrated a control efficacy on RKNs exceeded commercial nematicide avermectin and commercial bio-organic fertilizer, respectively. In addition, MCCC 1A00493 fermentation liquid and microbial organic fertilizer had positive effects on the growth of tomato plants. These findings confirmed that <em>V.dokdonensis</em> MCCC 1A00493 as a biological control agent and microbial organic fertilizer have significant effect on RKNs and can be used as potential biocontrol preparations.</p></div>\",\"PeriodicalId\":8880,\"journal\":{\"name\":\"Biological Control\",\"volume\":\"192 \",\"pages\":\"Article 105508\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1049964424000732/pdfft?md5=51a631363bc37d7fd52a75f52b3f5c41&pid=1-s2.0-S1049964424000732-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Control\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1049964424000732\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Control","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1049964424000732","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Evaluation of Virgibacillus dokdonensis MCCC 1A00493 as a biological control agent and microbial organic fertilizer against root-knot nematodes
Root-knot nematodes (RKNs) can result in severe losses to crop production and economies. Virgibacillus dokdonensis MCCC 1A00493, a deep-sea bacterium, has demonstrated potent antagonistic effects against Meloidogyne incognita in vitro. However, the control efficacy under greenhouse and field conditions remains unclear. In this study, we investigated the nematicidal effect of MCCC 1A00493 fermentation liquid and its synergism with black soldier fly (BSF) larval frass organic fertilizer both in greenhouse and field experiments. MCCC 1A00493 fermentation liquid demonstrated a significant control efficacy on RKNs both in greenhouse and field experiments, with the highest control efficacy reaching 68.97 % and 74.87 %, respectively. Meanwhile, the synergistic effects of MCCC 1A00493 and BSF larvae frass organic fertilizer was investigated by adding 10 % suspension (1 × 109 CFU/mL) of MCCC 1A00493 into 71.51 kg of chicken manure organic fertilizer produced by co-conversion of BSF larvae and Bacillus subtilis BSF-CL. It was noted that MCCC 1A00493 microbial organic fertilizer reduced disease incidence of RKNs significantly both in greenhouse and field experiments, with the root gall index decreasing by 51.75 % and 63.22 %, respectively. MCCC 1A00493 fermentation liquid and microbial organic fertilizer demonstrated a control efficacy on RKNs exceeded commercial nematicide avermectin and commercial bio-organic fertilizer, respectively. In addition, MCCC 1A00493 fermentation liquid and microbial organic fertilizer had positive effects on the growth of tomato plants. These findings confirmed that V.dokdonensis MCCC 1A00493 as a biological control agent and microbial organic fertilizer have significant effect on RKNs and can be used as potential biocontrol preparations.
期刊介绍:
Biological control is an environmentally sound and effective means of reducing or mitigating pests and pest effects through the use of natural enemies. The aim of Biological Control is to promote this science and technology through publication of original research articles and reviews of research and theory. The journal devotes a section to reports on biotechnologies dealing with the elucidation and use of genes or gene products for the enhancement of biological control agents.
The journal encompasses biological control of viral, microbial, nematode, insect, mite, weed, and vertebrate pests in agriculture, aquatic, forest, natural resource, stored product, and urban environments. Biological control of arthropod pests of human and domestic animals is also included. Ecological, molecular, and biotechnological approaches to the understanding of biological control are welcome.