Nguyen T. Hieu , Dang H. Nguyen , Nhu N. Nguyen , Tran D. Tuong
{"title":"带疫苗接种的混合随机 SIS 流行病模型:无疾病状态的稳定性及其应用","authors":"Nguyen T. Hieu , Dang H. Nguyen , Nhu N. Nguyen , Tran D. Tuong","doi":"10.1016/j.nahs.2024.101492","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider a stochastic SIS epidemic model with vaccination in random switching environment. The system is formulated as a hybrid stochastic differential equation. We provide a threshold number that characterizes completely its longtime behavior. It turns out that if the threshold is negative, the number of the infected class converges to zero or the extinction happens. The rate of convergence is also obtained. In contrast, if the threshold is positive, the infection is endemic. We are able to obtain an algebraic formula for the threshold, which helps us to study some strategies for controlling the disease such as: (i) determining the minimum vaccination rate needed to keep the population from the disease and (ii) determining the strategy with minimum cost of vaccination and treatment. To illustrate the results, a number of mathematical simulations and numerical examples are also presented.</p></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"53 ","pages":"Article 101492"},"PeriodicalIF":3.7000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid stochastic SIS epidemic models with vaccination: Stability of the disease-free state and applications\",\"authors\":\"Nguyen T. Hieu , Dang H. Nguyen , Nhu N. Nguyen , Tran D. Tuong\",\"doi\":\"10.1016/j.nahs.2024.101492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider a stochastic SIS epidemic model with vaccination in random switching environment. The system is formulated as a hybrid stochastic differential equation. We provide a threshold number that characterizes completely its longtime behavior. It turns out that if the threshold is negative, the number of the infected class converges to zero or the extinction happens. The rate of convergence is also obtained. In contrast, if the threshold is positive, the infection is endemic. We are able to obtain an algebraic formula for the threshold, which helps us to study some strategies for controlling the disease such as: (i) determining the minimum vaccination rate needed to keep the population from the disease and (ii) determining the strategy with minimum cost of vaccination and treatment. To illustrate the results, a number of mathematical simulations and numerical examples are also presented.</p></div>\",\"PeriodicalId\":49011,\"journal\":{\"name\":\"Nonlinear Analysis-Hybrid Systems\",\"volume\":\"53 \",\"pages\":\"Article 101492\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Hybrid Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751570X24000293\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Hybrid Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751570X24000293","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Hybrid stochastic SIS epidemic models with vaccination: Stability of the disease-free state and applications
In this paper, we consider a stochastic SIS epidemic model with vaccination in random switching environment. The system is formulated as a hybrid stochastic differential equation. We provide a threshold number that characterizes completely its longtime behavior. It turns out that if the threshold is negative, the number of the infected class converges to zero or the extinction happens. The rate of convergence is also obtained. In contrast, if the threshold is positive, the infection is endemic. We are able to obtain an algebraic formula for the threshold, which helps us to study some strategies for controlling the disease such as: (i) determining the minimum vaccination rate needed to keep the population from the disease and (ii) determining the strategy with minimum cost of vaccination and treatment. To illustrate the results, a number of mathematical simulations and numerical examples are also presented.
期刊介绍:
Nonlinear Analysis: Hybrid Systems welcomes all important research and expository papers in any discipline. Papers that are principally concerned with the theory of hybrid systems should contain significant results indicating relevant applications. Papers that emphasize applications should consist of important real world models and illuminating techniques. Papers that interrelate various aspects of hybrid systems will be most welcome.