南美洲火灾频发与土地利用变化的一致性

IF 3.9 2区 环境科学与生态学 Q1 ECOLOGY Remote Sensing in Ecology and Conservation Pub Date : 2024-04-11 DOI:10.1002/rse2.390
Shulin Ren, Xiyan Xu, Gensuo Jia, Anqi Huang, Wei Ma
{"title":"南美洲火灾频发与土地利用变化的一致性","authors":"Shulin Ren, Xiyan Xu, Gensuo Jia, Anqi Huang, Wei Ma","doi":"10.1002/rse2.390","DOIUrl":null,"url":null,"abstract":"Fire events in South America are becoming more extensive and frequent as climate extremes and human pressures increase, and even repeatedly occurring in some areas within decades. However, the relationship between recurring fires and vegetation dynamics remains unclear. Here, we extracted the number of fire occurrences using burned area satellite product and analysed the relationship between recurring fires and vegetation dynamics with remote sensing land use and vegetation index datasets in South America. We show that approximately 1.39 × 10<jats:sup>6</jats:sup> km<jats:sup>2</jats:sup> of burnt area has experienced recurring fires during 2001–2020. More than half of burnt area of recurring fires occurred in savannahs with remaining burnt area in grasslands, forests and croplands. Although forests tended to be less susceptible to recurring fires among all vegetation types, their coverage loss with recurring fires was the greatest. The greater proportion of forest conversion to croplands concurred with more recurring fires. Conversely, the coverage of croplands and grasslands gained the most with recurring fires. In the areas without vegetation conversion, more frequent recurring fires further suppressed canopy greenness and density, even in fire‐adapted savannahs and grasslands. Our results suggest that recurring fires and land use change are generally coincident, reflecting the intense pressure of human activities on natural vegetation in South America. Thus, coordinated efforts on vegetation conservation and sustainable management of human‐induced burning in the region are urgently needed.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"19 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coherence of recurring fires and land use change in South America\",\"authors\":\"Shulin Ren, Xiyan Xu, Gensuo Jia, Anqi Huang, Wei Ma\",\"doi\":\"10.1002/rse2.390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fire events in South America are becoming more extensive and frequent as climate extremes and human pressures increase, and even repeatedly occurring in some areas within decades. However, the relationship between recurring fires and vegetation dynamics remains unclear. Here, we extracted the number of fire occurrences using burned area satellite product and analysed the relationship between recurring fires and vegetation dynamics with remote sensing land use and vegetation index datasets in South America. We show that approximately 1.39 × 10<jats:sup>6</jats:sup> km<jats:sup>2</jats:sup> of burnt area has experienced recurring fires during 2001–2020. More than half of burnt area of recurring fires occurred in savannahs with remaining burnt area in grasslands, forests and croplands. Although forests tended to be less susceptible to recurring fires among all vegetation types, their coverage loss with recurring fires was the greatest. The greater proportion of forest conversion to croplands concurred with more recurring fires. Conversely, the coverage of croplands and grasslands gained the most with recurring fires. In the areas without vegetation conversion, more frequent recurring fires further suppressed canopy greenness and density, even in fire‐adapted savannahs and grasslands. Our results suggest that recurring fires and land use change are generally coincident, reflecting the intense pressure of human activities on natural vegetation in South America. Thus, coordinated efforts on vegetation conservation and sustainable management of human‐induced burning in the region are urgently needed.\",\"PeriodicalId\":21132,\"journal\":{\"name\":\"Remote Sensing in Ecology and Conservation\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing in Ecology and Conservation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/rse2.390\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.390","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

随着极端气候和人类压力的增加,南美洲的火灾事件变得越来越广泛和频繁,甚至在某些地区几十年内反复发生。然而,反复发生的火灾与植被动态之间的关系仍不清楚。在此,我们利用烧毁面积卫星产品提取了火灾发生次数,并结合南美洲遥感土地利用和植被指数数据集分析了火灾重复发生与植被动态之间的关系。我们的研究表明,2001-2020 年间,约有 1.39 × 106 平方公里的烧毁面积经历了多次火灾。超过一半的复燃火灾烧毁面积发生在热带稀树草原,其余烧毁面积发生在草原、森林和耕地。虽然在所有植被类型中,森林往往不太容易受到复燃的影响,但其复燃的覆盖面积损失最大。森林转化为耕地的比例越大,复燃的火灾就越多。相反,耕地和草地的覆盖率在火灾发生时增加最多。在没有植被转化的地区,更频繁的复燃进一步抑制了树冠的绿色度和密度,即使在适应火的稀树草原和草地上也是如此。我们的研究结果表明,经常性火灾和土地利用变化一般是同时发生的,这反映了人类活动对南美洲自然植被造成的巨大压力。因此,迫切需要在该地区开展植被保护和人为焚烧的可持续管理方面的协调工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coherence of recurring fires and land use change in South America
Fire events in South America are becoming more extensive and frequent as climate extremes and human pressures increase, and even repeatedly occurring in some areas within decades. However, the relationship between recurring fires and vegetation dynamics remains unclear. Here, we extracted the number of fire occurrences using burned area satellite product and analysed the relationship between recurring fires and vegetation dynamics with remote sensing land use and vegetation index datasets in South America. We show that approximately 1.39 × 106 km2 of burnt area has experienced recurring fires during 2001–2020. More than half of burnt area of recurring fires occurred in savannahs with remaining burnt area in grasslands, forests and croplands. Although forests tended to be less susceptible to recurring fires among all vegetation types, their coverage loss with recurring fires was the greatest. The greater proportion of forest conversion to croplands concurred with more recurring fires. Conversely, the coverage of croplands and grasslands gained the most with recurring fires. In the areas without vegetation conversion, more frequent recurring fires further suppressed canopy greenness and density, even in fire‐adapted savannahs and grasslands. Our results suggest that recurring fires and land use change are generally coincident, reflecting the intense pressure of human activities on natural vegetation in South America. Thus, coordinated efforts on vegetation conservation and sustainable management of human‐induced burning in the region are urgently needed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing in Ecology and Conservation
Remote Sensing in Ecology and Conservation Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
9.80
自引率
5.50%
发文量
69
审稿时长
18 weeks
期刊介绍: emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students. Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.
期刊最新文献
Alpine greening deciphered by forest stand and structure dynamics in advancing treelines of the southwestern European Alps The secret acoustic world of leopards: A paired camera trap and bioacoustics survey facilitates the individual identification of leopards via their roars Mapping oil palm plantations and their implications on forest and great ape habitat loss in Central Africa The untapped potential of camera traps for farmland biodiversity monitoring: current practice and outstanding agroecological questions Quantifying range‐ and topographical biases in weather surveillance radar measures of migratory bird activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1