Shulin Ren, Xiyan Xu, Gensuo Jia, Anqi Huang, Wei Ma
{"title":"南美洲火灾频发与土地利用变化的一致性","authors":"Shulin Ren, Xiyan Xu, Gensuo Jia, Anqi Huang, Wei Ma","doi":"10.1002/rse2.390","DOIUrl":null,"url":null,"abstract":"Fire events in South America are becoming more extensive and frequent as climate extremes and human pressures increase, and even repeatedly occurring in some areas within decades. However, the relationship between recurring fires and vegetation dynamics remains unclear. Here, we extracted the number of fire occurrences using burned area satellite product and analysed the relationship between recurring fires and vegetation dynamics with remote sensing land use and vegetation index datasets in South America. We show that approximately 1.39 × 10<jats:sup>6</jats:sup> km<jats:sup>2</jats:sup> of burnt area has experienced recurring fires during 2001–2020. More than half of burnt area of recurring fires occurred in savannahs with remaining burnt area in grasslands, forests and croplands. Although forests tended to be less susceptible to recurring fires among all vegetation types, their coverage loss with recurring fires was the greatest. The greater proportion of forest conversion to croplands concurred with more recurring fires. Conversely, the coverage of croplands and grasslands gained the most with recurring fires. In the areas without vegetation conversion, more frequent recurring fires further suppressed canopy greenness and density, even in fire‐adapted savannahs and grasslands. Our results suggest that recurring fires and land use change are generally coincident, reflecting the intense pressure of human activities on natural vegetation in South America. Thus, coordinated efforts on vegetation conservation and sustainable management of human‐induced burning in the region are urgently needed.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"19 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coherence of recurring fires and land use change in South America\",\"authors\":\"Shulin Ren, Xiyan Xu, Gensuo Jia, Anqi Huang, Wei Ma\",\"doi\":\"10.1002/rse2.390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fire events in South America are becoming more extensive and frequent as climate extremes and human pressures increase, and even repeatedly occurring in some areas within decades. However, the relationship between recurring fires and vegetation dynamics remains unclear. Here, we extracted the number of fire occurrences using burned area satellite product and analysed the relationship between recurring fires and vegetation dynamics with remote sensing land use and vegetation index datasets in South America. We show that approximately 1.39 × 10<jats:sup>6</jats:sup> km<jats:sup>2</jats:sup> of burnt area has experienced recurring fires during 2001–2020. More than half of burnt area of recurring fires occurred in savannahs with remaining burnt area in grasslands, forests and croplands. Although forests tended to be less susceptible to recurring fires among all vegetation types, their coverage loss with recurring fires was the greatest. The greater proportion of forest conversion to croplands concurred with more recurring fires. Conversely, the coverage of croplands and grasslands gained the most with recurring fires. In the areas without vegetation conversion, more frequent recurring fires further suppressed canopy greenness and density, even in fire‐adapted savannahs and grasslands. Our results suggest that recurring fires and land use change are generally coincident, reflecting the intense pressure of human activities on natural vegetation in South America. Thus, coordinated efforts on vegetation conservation and sustainable management of human‐induced burning in the region are urgently needed.\",\"PeriodicalId\":21132,\"journal\":{\"name\":\"Remote Sensing in Ecology and Conservation\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing in Ecology and Conservation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/rse2.390\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.390","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Coherence of recurring fires and land use change in South America
Fire events in South America are becoming more extensive and frequent as climate extremes and human pressures increase, and even repeatedly occurring in some areas within decades. However, the relationship between recurring fires and vegetation dynamics remains unclear. Here, we extracted the number of fire occurrences using burned area satellite product and analysed the relationship between recurring fires and vegetation dynamics with remote sensing land use and vegetation index datasets in South America. We show that approximately 1.39 × 106 km2 of burnt area has experienced recurring fires during 2001–2020. More than half of burnt area of recurring fires occurred in savannahs with remaining burnt area in grasslands, forests and croplands. Although forests tended to be less susceptible to recurring fires among all vegetation types, their coverage loss with recurring fires was the greatest. The greater proportion of forest conversion to croplands concurred with more recurring fires. Conversely, the coverage of croplands and grasslands gained the most with recurring fires. In the areas without vegetation conversion, more frequent recurring fires further suppressed canopy greenness and density, even in fire‐adapted savannahs and grasslands. Our results suggest that recurring fires and land use change are generally coincident, reflecting the intense pressure of human activities on natural vegetation in South America. Thus, coordinated efforts on vegetation conservation and sustainable management of human‐induced burning in the region are urgently needed.
期刊介绍:
emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students.
Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.