{"title":"基于随机向量间预测强度的分层变量聚类","authors":"Sebastian Fuchs, Yuping Wang","doi":"10.1016/j.ijar.2024.109185","DOIUrl":null,"url":null,"abstract":"<div><p>A rank-invariant clustering of variables is introduced that is based on the predictive strength between groups of variables, i.e., two groups are assigned a high similarity if the variables in the first group contain high predictive information about the behaviour of the variables in the other group and/or vice versa. The method presented here is model-free, dependence-based and does not require any distributional assumptions. Various general invariance and continuity properties are investigated, with special attention to those that are beneficial for the agglomerative hierarchical clustering procedure. A fully non-parametric estimator is considered whose excellent performance is demonstrated in several simulation studies and by means of real-data examples.</p></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"170 ","pages":"Article 109185"},"PeriodicalIF":3.2000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888613X24000720/pdfft?md5=5ad583de2d0cc01c6ad863362aee583f&pid=1-s2.0-S0888613X24000720-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hierarchical variable clustering based on the predictive strength between random vectors\",\"authors\":\"Sebastian Fuchs, Yuping Wang\",\"doi\":\"10.1016/j.ijar.2024.109185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A rank-invariant clustering of variables is introduced that is based on the predictive strength between groups of variables, i.e., two groups are assigned a high similarity if the variables in the first group contain high predictive information about the behaviour of the variables in the other group and/or vice versa. The method presented here is model-free, dependence-based and does not require any distributional assumptions. Various general invariance and continuity properties are investigated, with special attention to those that are beneficial for the agglomerative hierarchical clustering procedure. A fully non-parametric estimator is considered whose excellent performance is demonstrated in several simulation studies and by means of real-data examples.</p></div>\",\"PeriodicalId\":13842,\"journal\":{\"name\":\"International Journal of Approximate Reasoning\",\"volume\":\"170 \",\"pages\":\"Article 109185\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0888613X24000720/pdfft?md5=5ad583de2d0cc01c6ad863362aee583f&pid=1-s2.0-S0888613X24000720-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Approximate Reasoning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888613X24000720\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X24000720","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Hierarchical variable clustering based on the predictive strength between random vectors
A rank-invariant clustering of variables is introduced that is based on the predictive strength between groups of variables, i.e., two groups are assigned a high similarity if the variables in the first group contain high predictive information about the behaviour of the variables in the other group and/or vice versa. The method presented here is model-free, dependence-based and does not require any distributional assumptions. Various general invariance and continuity properties are investigated, with special attention to those that are beneficial for the agglomerative hierarchical clustering procedure. A fully non-parametric estimator is considered whose excellent performance is demonstrated in several simulation studies and by means of real-data examples.
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.