Gabriel Tamura , Gonzalo Llano , Andrés Aristizábal , Juan Valencia , Luz Sua , Liliana Fernandez
{"title":"在齐氏-奈尔森染色切片中检测结核病的机器学习方法:系统性文献综述","authors":"Gabriel Tamura , Gonzalo Llano , Andrés Aristizábal , Juan Valencia , Luz Sua , Liliana Fernandez","doi":"10.1016/j.iswa.2024.200365","DOIUrl":null,"url":null,"abstract":"<div><p>Tuberculosis (TB) remains a global health threat, and rapid, automated and accurate diagnosis is crucial for effective control. The tedious and subjective nature of Ziehl-Neelsen (ZN) stained smear microscopy for identifying Mycobacterium tuberculosis (MTB) motivates the exploration of alternative approaches. In recent years, machine learning (ML) methods have emerged as promising tools for automated TB detection in ZN-stained images. This systematic literature review (SLR) comprehensively examines the application of ML methods for TB detection between 2017 and 2023, focusing on their performance metrics and employed dataset characteristics. The study identifies advancements, establishes the state of the art, and pinpoints areas for future research and development in this domain. It sheds light on the discussion about the readiness of machine-learning methods to be confidently, reliably and cost-effectively used to automate the process of tuberculosis detection in ZN slides, being it significant for the health systems worldwide.</p><p>Following established SLR guidelines, we defined research questions, retrieved 175 papers from 7 well-known sources, and discarded those not complying with the inclusion criteria. Data extraction and analysis were performed on the resulting 65 papers to address our research questions. The key contributions of this review are as follows. First, it presents a characterization of the state of the art of ML methods for ZN-stained TB detection, especially in sputum and tissue. Second, it analyzes top-performing methods and pre-processing techniques. Finally, it pinpoints key research gaps and opportunities.</p></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"22 ","pages":"Article 200365"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667305324000413/pdfft?md5=4a607310b1d0f545912baa479b9439fe&pid=1-s2.0-S2667305324000413-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Machine-learning methods for detecting tuberculosis in Ziehl-Neelsen stained slides: A systematic literature review\",\"authors\":\"Gabriel Tamura , Gonzalo Llano , Andrés Aristizábal , Juan Valencia , Luz Sua , Liliana Fernandez\",\"doi\":\"10.1016/j.iswa.2024.200365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tuberculosis (TB) remains a global health threat, and rapid, automated and accurate diagnosis is crucial for effective control. The tedious and subjective nature of Ziehl-Neelsen (ZN) stained smear microscopy for identifying Mycobacterium tuberculosis (MTB) motivates the exploration of alternative approaches. In recent years, machine learning (ML) methods have emerged as promising tools for automated TB detection in ZN-stained images. This systematic literature review (SLR) comprehensively examines the application of ML methods for TB detection between 2017 and 2023, focusing on their performance metrics and employed dataset characteristics. The study identifies advancements, establishes the state of the art, and pinpoints areas for future research and development in this domain. It sheds light on the discussion about the readiness of machine-learning methods to be confidently, reliably and cost-effectively used to automate the process of tuberculosis detection in ZN slides, being it significant for the health systems worldwide.</p><p>Following established SLR guidelines, we defined research questions, retrieved 175 papers from 7 well-known sources, and discarded those not complying with the inclusion criteria. Data extraction and analysis were performed on the resulting 65 papers to address our research questions. The key contributions of this review are as follows. First, it presents a characterization of the state of the art of ML methods for ZN-stained TB detection, especially in sputum and tissue. Second, it analyzes top-performing methods and pre-processing techniques. Finally, it pinpoints key research gaps and opportunities.</p></div>\",\"PeriodicalId\":100684,\"journal\":{\"name\":\"Intelligent Systems with Applications\",\"volume\":\"22 \",\"pages\":\"Article 200365\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667305324000413/pdfft?md5=4a607310b1d0f545912baa479b9439fe&pid=1-s2.0-S2667305324000413-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667305324000413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305324000413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine-learning methods for detecting tuberculosis in Ziehl-Neelsen stained slides: A systematic literature review
Tuberculosis (TB) remains a global health threat, and rapid, automated and accurate diagnosis is crucial for effective control. The tedious and subjective nature of Ziehl-Neelsen (ZN) stained smear microscopy for identifying Mycobacterium tuberculosis (MTB) motivates the exploration of alternative approaches. In recent years, machine learning (ML) methods have emerged as promising tools for automated TB detection in ZN-stained images. This systematic literature review (SLR) comprehensively examines the application of ML methods for TB detection between 2017 and 2023, focusing on their performance metrics and employed dataset characteristics. The study identifies advancements, establishes the state of the art, and pinpoints areas for future research and development in this domain. It sheds light on the discussion about the readiness of machine-learning methods to be confidently, reliably and cost-effectively used to automate the process of tuberculosis detection in ZN slides, being it significant for the health systems worldwide.
Following established SLR guidelines, we defined research questions, retrieved 175 papers from 7 well-known sources, and discarded those not complying with the inclusion criteria. Data extraction and analysis were performed on the resulting 65 papers to address our research questions. The key contributions of this review are as follows. First, it presents a characterization of the state of the art of ML methods for ZN-stained TB detection, especially in sputum and tissue. Second, it analyzes top-performing methods and pre-processing techniques. Finally, it pinpoints key research gaps and opportunities.