Qingsong Huang , Junqing Fan , Haoran Xu , Wei Han , Xiaohui Huang , Yunliang Chen
{"title":"AFENet:注意力引导特征增强网络和低空无人机污水排放口探测基准","authors":"Qingsong Huang , Junqing Fan , Haoran Xu , Wei Han , Xiaohui Huang , Yunliang Chen","doi":"10.1016/j.array.2024.100343","DOIUrl":null,"url":null,"abstract":"<div><p>Inspecting sewage outfall into rivers is significant to the precise management of the ecological environment because they are the last gate for pollutants to enter the river. Unmanned Aerial Vehicles (UAVs) have the characteristics of maneuverability and high-resolution images and have been used as an important means to inspect sewage outfalls. UAVs are widely used in daily sewage outfall inspections, but relying on manual interpretation lacks the corresponding low-altitude sewage outfall images dataset. Meanwhile, because of the sparse spatial distribution of sewage outfalls, problems like less labeled sample data, complex background types, and weak objects are also prominent. In order to promote the inspection of sewage outfalls, this paper proposes a low-attitude sewage outfall object detection dataset, namely UAV-SOD, and an attention-guided feature enhancement network, namely AFENet. The UAV-SOD dataset features high resolution, complex backgrounds, and diverse objects. Some of the outfall objects are limited by multi-scale, single-colored, and weak feature responses, leading to low detection accuracy. To localize these objects effectively, AFENet first uses the global context block (GCB) to jointly explore valuable global and local information, and then the region of interest (RoI) attention module (RAM) is used to explore the relationships between RoI features. Experimental results show that the proposed method improves detection performance on the proposed UAV-SOD dataset than representative state-of-the-art two-stage object detection methods.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"22 ","pages":"Article 100343"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590005624000092/pdfft?md5=c8639340099f7cc1f4ba21449477dc2a&pid=1-s2.0-S2590005624000092-main.pdf","citationCount":"0","resultStr":"{\"title\":\"AFENet: Attention-guided feature enhancement network and a benchmark for low-altitude UAV sewage outfall detection\",\"authors\":\"Qingsong Huang , Junqing Fan , Haoran Xu , Wei Han , Xiaohui Huang , Yunliang Chen\",\"doi\":\"10.1016/j.array.2024.100343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Inspecting sewage outfall into rivers is significant to the precise management of the ecological environment because they are the last gate for pollutants to enter the river. Unmanned Aerial Vehicles (UAVs) have the characteristics of maneuverability and high-resolution images and have been used as an important means to inspect sewage outfalls. UAVs are widely used in daily sewage outfall inspections, but relying on manual interpretation lacks the corresponding low-altitude sewage outfall images dataset. Meanwhile, because of the sparse spatial distribution of sewage outfalls, problems like less labeled sample data, complex background types, and weak objects are also prominent. In order to promote the inspection of sewage outfalls, this paper proposes a low-attitude sewage outfall object detection dataset, namely UAV-SOD, and an attention-guided feature enhancement network, namely AFENet. The UAV-SOD dataset features high resolution, complex backgrounds, and diverse objects. Some of the outfall objects are limited by multi-scale, single-colored, and weak feature responses, leading to low detection accuracy. To localize these objects effectively, AFENet first uses the global context block (GCB) to jointly explore valuable global and local information, and then the region of interest (RoI) attention module (RAM) is used to explore the relationships between RoI features. Experimental results show that the proposed method improves detection performance on the proposed UAV-SOD dataset than representative state-of-the-art two-stage object detection methods.</p></div>\",\"PeriodicalId\":8417,\"journal\":{\"name\":\"Array\",\"volume\":\"22 \",\"pages\":\"Article 100343\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590005624000092/pdfft?md5=c8639340099f7cc1f4ba21449477dc2a&pid=1-s2.0-S2590005624000092-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Array\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590005624000092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005624000092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
入河排污口是污染物进入河流的最后一道关口,因此对入河排污口进行检测对生态环境的精确管理意义重大。无人机(UAV)具有机动性强、图像清晰等特点,已被作为排污口巡查的重要手段。无人机在日常排污口巡查中应用广泛,但依靠人工判读缺乏相应的低空排污口图像数据集。同时,由于排污口空间分布稀疏,标注样本数据少、背景类型复杂、对象弱等问题也比较突出。为了促进排污口的检测,本文提出了低空排污口物体检测数据集 UAV-SOD 和注意力引导特征增强网络 AFENet。UAV-SOD 数据集具有分辨率高、背景复杂、对象多样等特点。一些排污口物体受限于多尺度、单色和弱特征响应,导致检测精度较低。为了有效定位这些物体,AFENet 首先使用全局上下文块(GCB)来共同探索有价值的全局和局部信息,然后使用兴趣区域(RoI)关注模块(RAM)来探索 RoI 特征之间的关系。实验结果表明,在拟议的 UAV-SOD 数据集上,与具有代表性的最先进的两阶段物体检测方法相比,所提出的方法提高了检测性能。
AFENet: Attention-guided feature enhancement network and a benchmark for low-altitude UAV sewage outfall detection
Inspecting sewage outfall into rivers is significant to the precise management of the ecological environment because they are the last gate for pollutants to enter the river. Unmanned Aerial Vehicles (UAVs) have the characteristics of maneuverability and high-resolution images and have been used as an important means to inspect sewage outfalls. UAVs are widely used in daily sewage outfall inspections, but relying on manual interpretation lacks the corresponding low-altitude sewage outfall images dataset. Meanwhile, because of the sparse spatial distribution of sewage outfalls, problems like less labeled sample data, complex background types, and weak objects are also prominent. In order to promote the inspection of sewage outfalls, this paper proposes a low-attitude sewage outfall object detection dataset, namely UAV-SOD, and an attention-guided feature enhancement network, namely AFENet. The UAV-SOD dataset features high resolution, complex backgrounds, and diverse objects. Some of the outfall objects are limited by multi-scale, single-colored, and weak feature responses, leading to low detection accuracy. To localize these objects effectively, AFENet first uses the global context block (GCB) to jointly explore valuable global and local information, and then the region of interest (RoI) attention module (RAM) is used to explore the relationships between RoI features. Experimental results show that the proposed method improves detection performance on the proposed UAV-SOD dataset than representative state-of-the-art two-stage object detection methods.