氧进化反应的四代火山图:超越质子耦合电子转移步骤?

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-04-15 DOI:10.1021/acs.accounts.4c00048
Kai S. Exner*, 
{"title":"氧进化反应的四代火山图:超越质子耦合电子转移步骤?","authors":"Kai S. Exner*,&nbsp;","doi":"10.1021/acs.accounts.4c00048","DOIUrl":null,"url":null,"abstract":"<p >Due to its importance for electrolyzers or metal–air batteries for energy conversion or storage, there is huge interest in the development of high-performance materials for the oxygen evolution reaction (OER). Theoretical investigations have aided the search for active material motifs through the construction of volcano plots for the kinetically sluggish OER, which involves the transfer of four proton–electron pairs to form a single oxygen molecule. The theory-driven volcano approach has gained unprecedented popularity in the catalysis and energy communities, largely due to its simplicity, as adsorption free energies can be used to approximate the electrocatalytic activity by heuristic descriptors.</p><p >In the last two decades, the binding-energy-based volcano method has witnessed a renaissance with special concepts being developed to incorporate missing factors into the analysis. To this end, this Account summarizes and discusses the different generations of volcano plots for the example of the OER. While first-generation methods relied on the assessment of the thermodynamic information for the OER reaction intermediates by means of scaling relations, the second and third generations developed strategies to include overpotential and kinetic effects into the analysis of activity trends. Finally, the fourth generation of volcano approaches allowed the incorporation of various mechanistic pathways into the volcano methodology, thus paving the path toward data- and mechanistic-driven volcano plots in electrocatalysis.</p><p >Although the concept of volcano plots has been significantly expanded in recent years, further research activities are discussed by challenging one of the main paradigms of the volcano concept. To date, the evaluation of activity trends relies on the assumption of proton-coupled electron transfer steps (CPET), even though there is experimental evidence of sequential proton–electron transfer (SPET) steps. While the computational assessment of SPET for solid-state electrodes is ambitious, it is strongly suggested to comprehend their importance in energy conversion and storage processes, including the OER. This can be achieved by knowledge transfer from homogeneous to heterogeneous electrocatalysis and by focusing on the material class of single-atom catalysts in which the active center is well defined. The derived concept of how to analyze the importance of SPET for mechanistic pathways in the OER over solid-state electrodes could further shape our understanding of the proton–electron transfer steps at electrified solid/liquid interfaces, which is crucial for further progress toward sustainable energy and climate neutrality.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.accounts.4c00048","citationCount":"0","resultStr":"{\"title\":\"Four Generations of Volcano Plots for the Oxygen Evolution Reaction: Beyond Proton-Coupled Electron Transfer Steps?\",\"authors\":\"Kai S. Exner*,&nbsp;\",\"doi\":\"10.1021/acs.accounts.4c00048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Due to its importance for electrolyzers or metal–air batteries for energy conversion or storage, there is huge interest in the development of high-performance materials for the oxygen evolution reaction (OER). Theoretical investigations have aided the search for active material motifs through the construction of volcano plots for the kinetically sluggish OER, which involves the transfer of four proton–electron pairs to form a single oxygen molecule. The theory-driven volcano approach has gained unprecedented popularity in the catalysis and energy communities, largely due to its simplicity, as adsorption free energies can be used to approximate the electrocatalytic activity by heuristic descriptors.</p><p >In the last two decades, the binding-energy-based volcano method has witnessed a renaissance with special concepts being developed to incorporate missing factors into the analysis. To this end, this Account summarizes and discusses the different generations of volcano plots for the example of the OER. While first-generation methods relied on the assessment of the thermodynamic information for the OER reaction intermediates by means of scaling relations, the second and third generations developed strategies to include overpotential and kinetic effects into the analysis of activity trends. Finally, the fourth generation of volcano approaches allowed the incorporation of various mechanistic pathways into the volcano methodology, thus paving the path toward data- and mechanistic-driven volcano plots in electrocatalysis.</p><p >Although the concept of volcano plots has been significantly expanded in recent years, further research activities are discussed by challenging one of the main paradigms of the volcano concept. To date, the evaluation of activity trends relies on the assumption of proton-coupled electron transfer steps (CPET), even though there is experimental evidence of sequential proton–electron transfer (SPET) steps. While the computational assessment of SPET for solid-state electrodes is ambitious, it is strongly suggested to comprehend their importance in energy conversion and storage processes, including the OER. This can be achieved by knowledge transfer from homogeneous to heterogeneous electrocatalysis and by focusing on the material class of single-atom catalysts in which the active center is well defined. The derived concept of how to analyze the importance of SPET for mechanistic pathways in the OER over solid-state electrodes could further shape our understanding of the proton–electron transfer steps at electrified solid/liquid interfaces, which is crucial for further progress toward sustainable energy and climate neutrality.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.accounts.4c00048\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.accounts.4c00048\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.accounts.4c00048","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于氧进化反应(OER)对电解槽或金属-空气电池的能量转换或储存具有重要意义,因此人们对开发用于氧进化反应(OER)的高性能材料产生了浓厚的兴趣。氧进化反应涉及四个质子-电子对的转移以形成单个氧分子,理论研究通过为动力学缓慢的氧进化反应构建火山图来帮助寻找活性材料图案。理论驱动的火山方法在催化和能源界获得了空前的欢迎,这主要归功于它的简便性,因为吸附自由能可用于通过启发式描述符来近似计算电催化活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Four Generations of Volcano Plots for the Oxygen Evolution Reaction: Beyond Proton-Coupled Electron Transfer Steps?

Due to its importance for electrolyzers or metal–air batteries for energy conversion or storage, there is huge interest in the development of high-performance materials for the oxygen evolution reaction (OER). Theoretical investigations have aided the search for active material motifs through the construction of volcano plots for the kinetically sluggish OER, which involves the transfer of four proton–electron pairs to form a single oxygen molecule. The theory-driven volcano approach has gained unprecedented popularity in the catalysis and energy communities, largely due to its simplicity, as adsorption free energies can be used to approximate the electrocatalytic activity by heuristic descriptors.

In the last two decades, the binding-energy-based volcano method has witnessed a renaissance with special concepts being developed to incorporate missing factors into the analysis. To this end, this Account summarizes and discusses the different generations of volcano plots for the example of the OER. While first-generation methods relied on the assessment of the thermodynamic information for the OER reaction intermediates by means of scaling relations, the second and third generations developed strategies to include overpotential and kinetic effects into the analysis of activity trends. Finally, the fourth generation of volcano approaches allowed the incorporation of various mechanistic pathways into the volcano methodology, thus paving the path toward data- and mechanistic-driven volcano plots in electrocatalysis.

Although the concept of volcano plots has been significantly expanded in recent years, further research activities are discussed by challenging one of the main paradigms of the volcano concept. To date, the evaluation of activity trends relies on the assumption of proton-coupled electron transfer steps (CPET), even though there is experimental evidence of sequential proton–electron transfer (SPET) steps. While the computational assessment of SPET for solid-state electrodes is ambitious, it is strongly suggested to comprehend their importance in energy conversion and storage processes, including the OER. This can be achieved by knowledge transfer from homogeneous to heterogeneous electrocatalysis and by focusing on the material class of single-atom catalysts in which the active center is well defined. The derived concept of how to analyze the importance of SPET for mechanistic pathways in the OER over solid-state electrodes could further shape our understanding of the proton–electron transfer steps at electrified solid/liquid interfaces, which is crucial for further progress toward sustainable energy and climate neutrality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
How Droplets Can Accelerate Reactions─Coacervate Protocells as Catalytic Microcompartments. Rational Construction of Two-Dimensional Conjugated Metal-Organic Frameworks (2D c-MOFs) for Electronics and Beyond. Overcoming Challenges of Lignin Nanoparticles: Expanding Opportunities for Scalable and Multifunctional Nanomaterials. Dual Nickel- and Photoredox-Catalyzed Asymmetric Reductive Cross-Couplings: Just a Change of the Reduction System? Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1