探索三维快速自旋回波和反转恢复梯度回波序列磁共振成像采集对脑肿瘤自动分割的影响

Mana Moassefi MD , Shahriar Faghani MD , Sara Khanipour Roshan MD , Gian Marco Conte MD, PhD , Seyed Moein Rassoulinejad Mousavi MD , Timothy J. Kaufmann MD , Bradley J. Erickson MD, PhD
{"title":"探索三维快速自旋回波和反转恢复梯度回波序列磁共振成像采集对脑肿瘤自动分割的影响","authors":"Mana Moassefi MD ,&nbsp;Shahriar Faghani MD ,&nbsp;Sara Khanipour Roshan MD ,&nbsp;Gian Marco Conte MD, PhD ,&nbsp;Seyed Moein Rassoulinejad Mousavi MD ,&nbsp;Timothy J. Kaufmann MD ,&nbsp;Bradley J. Erickson MD, PhD","doi":"10.1016/j.mcpdig.2024.03.006","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>To conduct a study comparing the performance of automated segmentation techniques using 2 different contrast-enhanced T1-weighted (CET1) magnetic resonance imaging (MRI) acquisition protocol.</p></div><div><h3>Patients and Methods</h3><p>We collected 100 preoperative glioblastoma (GBM) MRIs consisting of 50 IR-GRE and 50 3-dimensional fast spin echo (3D-FSE) image sets. Their gold-standard tumor segmentation mask was created based on the expert opinion of a neuroradiologist. Cases were randomly divided into training and test sets. We used the no new UNet (nnUNet) architecture pretrained on the 501-image public data set containing IR-GRE sequence image sets, followed by 2 training rounds with the IR-GRE and 3D-FSE images, respectively. For each patient, in the IR-GRE and 3D-FSE test sets, we had 2 prediction masks, one from the model fine-tuned with the IR-GRE training set and one with 3D-FSE. The dice similarity coefficients (DSCs) of the 2 sets of results for each case in the test sets were compared using the Wilcoxon tests.</p></div><div><h3>Results</h3><p>Models trained on 3D-FSE images outperformed IR-GRE models in lesion segmentation, with mean DSC differences of 0.057 and 0.022 in the respective test sets. For the 3D-FSE and IR-GRE test sets, the calculated <em>P</em> values comparing DSCs from 2 models were .02 and .61, respectively.</p></div><div><h3>Conclusion</h3><p>Including 3D-FSE MRI in the training data set improves segmentation performance when segmenting 3D-FSE images.</p></div>","PeriodicalId":74127,"journal":{"name":"Mayo Clinic Proceedings. Digital health","volume":"2 2","pages":"Pages 231-240"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949761224000269/pdfft?md5=f561c94cea75e11c92b35216bd0136b8&pid=1-s2.0-S2949761224000269-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring the Impact of 3D Fast Spin Echo and Inversion Recovery Gradient Echo Sequences Magnetic Resonance Imaging Acquisition on Automated Brain Tumor Segmentation\",\"authors\":\"Mana Moassefi MD ,&nbsp;Shahriar Faghani MD ,&nbsp;Sara Khanipour Roshan MD ,&nbsp;Gian Marco Conte MD, PhD ,&nbsp;Seyed Moein Rassoulinejad Mousavi MD ,&nbsp;Timothy J. Kaufmann MD ,&nbsp;Bradley J. Erickson MD, PhD\",\"doi\":\"10.1016/j.mcpdig.2024.03.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>To conduct a study comparing the performance of automated segmentation techniques using 2 different contrast-enhanced T1-weighted (CET1) magnetic resonance imaging (MRI) acquisition protocol.</p></div><div><h3>Patients and Methods</h3><p>We collected 100 preoperative glioblastoma (GBM) MRIs consisting of 50 IR-GRE and 50 3-dimensional fast spin echo (3D-FSE) image sets. Their gold-standard tumor segmentation mask was created based on the expert opinion of a neuroradiologist. Cases were randomly divided into training and test sets. We used the no new UNet (nnUNet) architecture pretrained on the 501-image public data set containing IR-GRE sequence image sets, followed by 2 training rounds with the IR-GRE and 3D-FSE images, respectively. For each patient, in the IR-GRE and 3D-FSE test sets, we had 2 prediction masks, one from the model fine-tuned with the IR-GRE training set and one with 3D-FSE. The dice similarity coefficients (DSCs) of the 2 sets of results for each case in the test sets were compared using the Wilcoxon tests.</p></div><div><h3>Results</h3><p>Models trained on 3D-FSE images outperformed IR-GRE models in lesion segmentation, with mean DSC differences of 0.057 and 0.022 in the respective test sets. For the 3D-FSE and IR-GRE test sets, the calculated <em>P</em> values comparing DSCs from 2 models were .02 and .61, respectively.</p></div><div><h3>Conclusion</h3><p>Including 3D-FSE MRI in the training data set improves segmentation performance when segmenting 3D-FSE images.</p></div>\",\"PeriodicalId\":74127,\"journal\":{\"name\":\"Mayo Clinic Proceedings. Digital health\",\"volume\":\"2 2\",\"pages\":\"Pages 231-240\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949761224000269/pdfft?md5=f561c94cea75e11c92b35216bd0136b8&pid=1-s2.0-S2949761224000269-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mayo Clinic Proceedings. Digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949761224000269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mayo Clinic Proceedings. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949761224000269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

患者和方法 我们收集了 100 张术前胶质母细胞瘤(GBM)MRI 图像,其中包括 50 张 IR-GRE 和 50 张三维快速自旋回波(3D-FSE)图像集。他们的金标准肿瘤分割掩膜是根据神经放射学专家的意见制作的。病例被随机分为训练集和测试集。我们使用无新UNet(nnUNet)架构,在包含IR-GRE序列图像集的501张公共数据集上进行预训练,然后分别使用IR-GRE和3D-FSE图像进行两轮训练。在 IR-GRE 和 3D-FSE 测试集中,我们为每位患者设置了 2 个预测掩码,一个来自使用 IR-GRE 训练集微调的模型,另一个来自使用 3D-FSE 的模型。使用 Wilcoxon 检验比较了测试集中每个病例的两组结果的骰子相似系数(DSC)。结果在病变分割方面,3D-FSE 图像上训练的模型优于 IR-GRE 模型,两个测试集中的平均 DSC 差值分别为 0.057 和 0.022。对于 3D-FSE 和 IR-GRE 测试集,比较 2 个模型的 DSC 计算出的 P 值分别为 0.02 和 0.61。结论将 3D-FSE MRI 纳入训练数据集可提高 3D-FSE 图像分割时的分割性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the Impact of 3D Fast Spin Echo and Inversion Recovery Gradient Echo Sequences Magnetic Resonance Imaging Acquisition on Automated Brain Tumor Segmentation

Objective

To conduct a study comparing the performance of automated segmentation techniques using 2 different contrast-enhanced T1-weighted (CET1) magnetic resonance imaging (MRI) acquisition protocol.

Patients and Methods

We collected 100 preoperative glioblastoma (GBM) MRIs consisting of 50 IR-GRE and 50 3-dimensional fast spin echo (3D-FSE) image sets. Their gold-standard tumor segmentation mask was created based on the expert opinion of a neuroradiologist. Cases were randomly divided into training and test sets. We used the no new UNet (nnUNet) architecture pretrained on the 501-image public data set containing IR-GRE sequence image sets, followed by 2 training rounds with the IR-GRE and 3D-FSE images, respectively. For each patient, in the IR-GRE and 3D-FSE test sets, we had 2 prediction masks, one from the model fine-tuned with the IR-GRE training set and one with 3D-FSE. The dice similarity coefficients (DSCs) of the 2 sets of results for each case in the test sets were compared using the Wilcoxon tests.

Results

Models trained on 3D-FSE images outperformed IR-GRE models in lesion segmentation, with mean DSC differences of 0.057 and 0.022 in the respective test sets. For the 3D-FSE and IR-GRE test sets, the calculated P values comparing DSCs from 2 models were .02 and .61, respectively.

Conclusion

Including 3D-FSE MRI in the training data set improves segmentation performance when segmenting 3D-FSE images.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mayo Clinic Proceedings. Digital health
Mayo Clinic Proceedings. Digital health Medicine and Dentistry (General), Health Informatics, Public Health and Health Policy
自引率
0.00%
发文量
0
审稿时长
47 days
期刊最新文献
Developing a Research Center for Artificial Intelligence in Medicine Strategic Considerations for Selecting Artificial Intelligence Solutions for Institutional Integration: A Single-Center Experience Reviewers for Mayo Clinic Proceedings: Digital Health (2024) A Blueprint for Clinical-Driven Medical Device Development: The Feverkidstool Application to Identify Children With Serious Bacterial Infection Cost-Effectiveness of Artificial Intelligence-Enabled Electrocardiograms for Early Detection of Low Ejection Fraction: A Secondary Analysis of the Electrocardiogram Artificial Intelligence-Guided Screening for Low Ejection Fraction Trial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1