基于磁畴壁量子比特的通用量子计算

Shuang Li , Xichao Zhang , Motohiko Ezawa , Yan Zhou
{"title":"基于磁畴壁量子比特的通用量子计算","authors":"Shuang Li ,&nbsp;Xichao Zhang ,&nbsp;Motohiko Ezawa ,&nbsp;Yan Zhou","doi":"10.1016/j.mtquan.2024.100005","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum computers allow to solve efficiently certain problems that are intractable for classical computers. For the realization of a quantum computer, a qubit design as the basic building block is a nontrivial starting point. Within a nanoscale ferromagnetic domain wall stabilized by achiral energy, two degenerate chirality forms exist which can be regarded as the two qubit states. Our numerical demonstration shows that the manipulation of spin configurations of the ferromagnetic domain walls is governed by magnetic and electric fields for single-qubit quantum gates, while the Ising exchange coupling facilitates the two-qubit gates. The incorporation of these quantum gates permits universal quantum computation. Furthermore, we discuss the estimation of the coherence time, as well as the initialization and readout of the qubits. Our findings show a practical implementation of quantum computing architectures based on the domain-wall qubits in ferromagnetic materials.</p></div>","PeriodicalId":100894,"journal":{"name":"Materials Today Quantum","volume":"2 ","pages":"Article 100005"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950257824000052/pdfft?md5=93163fa12802bb73447d892b0f582e07&pid=1-s2.0-S2950257824000052-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Universal quantum computing based on magnetic domain-wall qubits\",\"authors\":\"Shuang Li ,&nbsp;Xichao Zhang ,&nbsp;Motohiko Ezawa ,&nbsp;Yan Zhou\",\"doi\":\"10.1016/j.mtquan.2024.100005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quantum computers allow to solve efficiently certain problems that are intractable for classical computers. For the realization of a quantum computer, a qubit design as the basic building block is a nontrivial starting point. Within a nanoscale ferromagnetic domain wall stabilized by achiral energy, two degenerate chirality forms exist which can be regarded as the two qubit states. Our numerical demonstration shows that the manipulation of spin configurations of the ferromagnetic domain walls is governed by magnetic and electric fields for single-qubit quantum gates, while the Ising exchange coupling facilitates the two-qubit gates. The incorporation of these quantum gates permits universal quantum computation. Furthermore, we discuss the estimation of the coherence time, as well as the initialization and readout of the qubits. Our findings show a practical implementation of quantum computing architectures based on the domain-wall qubits in ferromagnetic materials.</p></div>\",\"PeriodicalId\":100894,\"journal\":{\"name\":\"Materials Today Quantum\",\"volume\":\"2 \",\"pages\":\"Article 100005\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2950257824000052/pdfft?md5=93163fa12802bb73447d892b0f582e07&pid=1-s2.0-S2950257824000052-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950257824000052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Quantum","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950257824000052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子计算机可以高效地解决经典计算机难以解决的某些问题。要实现量子计算机,以量子比特设计为基本构件是一个非难的起点。在由非手性能量稳定的纳米级铁磁畴壁中,存在两种退化的手性形式,可被视为两种量子比特态。我们的数值演示表明,对于单量子比特量子门来说,铁磁畴壁自旋配置的操纵受磁场和电场的支配,而伊辛交换耦合则有利于双量子比特门。这些量子门的加入允许进行通用量子计算。此外,我们还讨论了相干时间的估算以及量子比特的初始化和读出。我们的研究结果表明,基于铁磁材料中的畴壁量子比特,量子计算体系结构已得到实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Universal quantum computing based on magnetic domain-wall qubits

Quantum computers allow to solve efficiently certain problems that are intractable for classical computers. For the realization of a quantum computer, a qubit design as the basic building block is a nontrivial starting point. Within a nanoscale ferromagnetic domain wall stabilized by achiral energy, two degenerate chirality forms exist which can be regarded as the two qubit states. Our numerical demonstration shows that the manipulation of spin configurations of the ferromagnetic domain walls is governed by magnetic and electric fields for single-qubit quantum gates, while the Ising exchange coupling facilitates the two-qubit gates. The incorporation of these quantum gates permits universal quantum computation. Furthermore, we discuss the estimation of the coherence time, as well as the initialization and readout of the qubits. Our findings show a practical implementation of quantum computing architectures based on the domain-wall qubits in ferromagnetic materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Topological magnetic defects in a strong permanent magnet Nd2Fe14B Synthesis of temperature-sensitive boron, nitrogen and sulphur doped carbon dots and their applications Nanometric modulations of the magnetic structure of the element Nd Correlated insulators and charge density wave states in chirally twisted triple bilayer graphene Quantum machine learning for corrosion resistance in stainless steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1