利用深度神经网络和分子电子密度按健康危害对物质进行分类

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Cheminformatics Pub Date : 2024-04-16 DOI:10.1186/s13321-024-00835-y
Satnam Singh, Gina Zeh, Jessica Freiherr, Thilo Bauer, Isik Türkmen, Andreas T. Grasskamp
{"title":"利用深度神经网络和分子电子密度按健康危害对物质进行分类","authors":"Satnam Singh,&nbsp;Gina Zeh,&nbsp;Jessica Freiherr,&nbsp;Thilo Bauer,&nbsp;Isik Türkmen,&nbsp;Andreas T. Grasskamp","doi":"10.1186/s13321-024-00835-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper we present a method that allows leveraging 3D electron density information to train a deep neural network pipeline to segment regions of high, medium and low electronegativity and classify substances as health hazardous or non-hazardous. We show that this can be used for use-cases such as cosmetics and food products. For this purpose, we first generate 3D electron density cubes using semiempirical molecular calculations for a custom European Chemicals Agency (ECHA) subset consisting of substances labelled as hazardous and non-hazardous for cosmetic usage. Together with their 3-class electronegativity maps we train a modified 3D-UNet with electron density cubes to segment reactive sites in molecules and classify substances with an accuracy of 78.1%. We perform the same process on a custom food dataset (CompFood) consisting of hazardous and non-hazardous substances compiled from European Food Safety Authority (EFSA) OpenFoodTox, Food and Drug Administration (FDA) Generally Recognized as Safe (GRAS) and FooDB datasets to achieve a classification accuracy of 64.1%. Our results show that 3D electron densities and particularly masked electron densities, calculated by taking a product of original electron densities and regions of high and low electronegativity can be used to classify molecules for different use-cases and thus serve not only to guide safe-by-design product development but also aid in regulatory decisions.</p>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00835-y","citationCount":"0","resultStr":"{\"title\":\"Classification of substances by health hazard using deep neural networks and molecular electron densities\",\"authors\":\"Satnam Singh,&nbsp;Gina Zeh,&nbsp;Jessica Freiherr,&nbsp;Thilo Bauer,&nbsp;Isik Türkmen,&nbsp;Andreas T. Grasskamp\",\"doi\":\"10.1186/s13321-024-00835-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we present a method that allows leveraging 3D electron density information to train a deep neural network pipeline to segment regions of high, medium and low electronegativity and classify substances as health hazardous or non-hazardous. We show that this can be used for use-cases such as cosmetics and food products. For this purpose, we first generate 3D electron density cubes using semiempirical molecular calculations for a custom European Chemicals Agency (ECHA) subset consisting of substances labelled as hazardous and non-hazardous for cosmetic usage. Together with their 3-class electronegativity maps we train a modified 3D-UNet with electron density cubes to segment reactive sites in molecules and classify substances with an accuracy of 78.1%. We perform the same process on a custom food dataset (CompFood) consisting of hazardous and non-hazardous substances compiled from European Food Safety Authority (EFSA) OpenFoodTox, Food and Drug Administration (FDA) Generally Recognized as Safe (GRAS) and FooDB datasets to achieve a classification accuracy of 64.1%. Our results show that 3D electron densities and particularly masked electron densities, calculated by taking a product of original electron densities and regions of high and low electronegativity can be used to classify molecules for different use-cases and thus serve not only to guide safe-by-design product development but also aid in regulatory decisions.</p>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00835-y\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-024-00835-y\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00835-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了一种利用三维电子密度信息训练深度神经网络管道的方法,该方法可分割高、中、低电负性区域,并将物质分类为对健康有害或无害的物质。我们的研究表明,这种方法可用于化妆品和食品等应用案例。为此,我们首先利用半经验分子计算,为欧洲化学品管理局(ECHA)定制的子集生成三维电子密度立方体,该子集由化妆品中被标为有害和无害的物质组成。我们利用电子密度立方体对修改后的 3D-UNet 进行训练,并结合其 3 类电负性图对分子中的反应位点进行分割,从而对物质进行分类,准确率达到 78.1%。我们在一个定制的食品数据集(CompFood)上执行了相同的过程,该数据集由欧洲食品安全局(EFSA)OpenFoodTox、美国食品和药物管理局(FDA)公认安全(GRAS)和 FooDB 数据集中的有害和无害物质组成,分类准确率达到 64.1%。我们的研究结果表明,三维电子密度,特别是通过原始电子密度和高低电负性区域的乘积计算出的掩蔽电子密度,可用于对不同用途的分子进行分类,因此不仅可以指导安全设计产品的开发,还有助于监管决策。我们的目标是通过证明深度学习网络可以在分子的三维电子密度表征上进行训练,为用于训练机器学习算法的多样化三维分子表征做出贡献。这种方法以前从未用于训练机器学习模型,它允许利用分子的真实空间域来预测其特性,如其在化妆品和食品中的适用性,以及未来的其他分子特性。用于训练的数据和代码可在 https://github.com/s-singh-ivv/eDen-Substances 上查阅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of substances by health hazard using deep neural networks and molecular electron densities

In this paper we present a method that allows leveraging 3D electron density information to train a deep neural network pipeline to segment regions of high, medium and low electronegativity and classify substances as health hazardous or non-hazardous. We show that this can be used for use-cases such as cosmetics and food products. For this purpose, we first generate 3D electron density cubes using semiempirical molecular calculations for a custom European Chemicals Agency (ECHA) subset consisting of substances labelled as hazardous and non-hazardous for cosmetic usage. Together with their 3-class electronegativity maps we train a modified 3D-UNet with electron density cubes to segment reactive sites in molecules and classify substances with an accuracy of 78.1%. We perform the same process on a custom food dataset (CompFood) consisting of hazardous and non-hazardous substances compiled from European Food Safety Authority (EFSA) OpenFoodTox, Food and Drug Administration (FDA) Generally Recognized as Safe (GRAS) and FooDB datasets to achieve a classification accuracy of 64.1%. Our results show that 3D electron densities and particularly masked electron densities, calculated by taking a product of original electron densities and regions of high and low electronegativity can be used to classify molecules for different use-cases and thus serve not only to guide safe-by-design product development but also aid in regulatory decisions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
期刊最新文献
cidalsDB: an AI-empowered platform for anti-pathogen therapeutics research Group graph: a molecular graph representation with enhanced performance, efficiency and interpretability GT-NMR: a novel graph transformer-based approach for accurate prediction of NMR chemical shifts Suitability of large language models for extraction of high-quality chemical reaction dataset from patent literature Molecular identification via molecular fingerprint extraction from atomic force microscopy images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1