Jonas Lueg, Maryam K. Garba, Tom M. W. Nye, Stephan F. Huckemann
{"title":"系统发生树的瓦尔德空间基础","authors":"Jonas Lueg, Maryam K. Garba, Tom M. W. Nye, Stephan F. Huckemann","doi":"10.1112/jlms.12893","DOIUrl":null,"url":null,"abstract":"<p>Evolutionary relationships between species are represented by phylogenetic trees, but these relationships are subject to uncertainty due to the random nature of evolution. A geometry for the space of phylogenetic trees is necessary in order to properly quantify this uncertainty during the statistical analysis of collections of possible evolutionary trees inferred from biological data. Recently, the wald space has been introduced: a length space for trees which is a certain subset of the manifold of symmetric positive definite matrices. In this work, the wald space is introduced formally and its topology and structure is studied in detail. In particular, we show that wald space has the topology of a disjoint union of open cubes, it is contractible, and by careful characterisation of cube boundaries, we demonstrate that wald space is a Whitney stratified space of type (A). Imposing the metric induced by the affine invariant metric on symmetric positive definite matrices, we prove that wald space is a geodesic Riemann stratified space. A new numerical method is proposed and investigated for construction of geodesics, computation of Fréchet means and calculation of curvature in wald space. This work is intended to serve as a mathematical foundation for further geometric and statistical research on this space.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12893","citationCount":"0","resultStr":"{\"title\":\"Foundations of the wald space for phylogenetic trees\",\"authors\":\"Jonas Lueg, Maryam K. Garba, Tom M. W. Nye, Stephan F. Huckemann\",\"doi\":\"10.1112/jlms.12893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Evolutionary relationships between species are represented by phylogenetic trees, but these relationships are subject to uncertainty due to the random nature of evolution. A geometry for the space of phylogenetic trees is necessary in order to properly quantify this uncertainty during the statistical analysis of collections of possible evolutionary trees inferred from biological data. Recently, the wald space has been introduced: a length space for trees which is a certain subset of the manifold of symmetric positive definite matrices. In this work, the wald space is introduced formally and its topology and structure is studied in detail. In particular, we show that wald space has the topology of a disjoint union of open cubes, it is contractible, and by careful characterisation of cube boundaries, we demonstrate that wald space is a Whitney stratified space of type (A). Imposing the metric induced by the affine invariant metric on symmetric positive definite matrices, we prove that wald space is a geodesic Riemann stratified space. A new numerical method is proposed and investigated for construction of geodesics, computation of Fréchet means and calculation of curvature in wald space. This work is intended to serve as a mathematical foundation for further geometric and statistical research on this space.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12893\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12893\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12893","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Foundations of the wald space for phylogenetic trees
Evolutionary relationships between species are represented by phylogenetic trees, but these relationships are subject to uncertainty due to the random nature of evolution. A geometry for the space of phylogenetic trees is necessary in order to properly quantify this uncertainty during the statistical analysis of collections of possible evolutionary trees inferred from biological data. Recently, the wald space has been introduced: a length space for trees which is a certain subset of the manifold of symmetric positive definite matrices. In this work, the wald space is introduced formally and its topology and structure is studied in detail. In particular, we show that wald space has the topology of a disjoint union of open cubes, it is contractible, and by careful characterisation of cube boundaries, we demonstrate that wald space is a Whitney stratified space of type (A). Imposing the metric induced by the affine invariant metric on symmetric positive definite matrices, we prove that wald space is a geodesic Riemann stratified space. A new numerical method is proposed and investigated for construction of geodesics, computation of Fréchet means and calculation of curvature in wald space. This work is intended to serve as a mathematical foundation for further geometric and statistical research on this space.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.