基于 Q-learning 的情感分析增强型集合学习法

IF 1.5 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Iranian Journal of Science and Technology-Transactions of Electrical Engineering Pub Date : 2024-04-12 DOI:10.1007/s40998-024-00718-w
Mohammad Savargiv, Behrooz Masoumi, Mohammad Reza Keyvanpour
{"title":"基于 Q-learning 的情感分析增强型集合学习法","authors":"Mohammad Savargiv, Behrooz Masoumi, Mohammad Reza Keyvanpour","doi":"10.1007/s40998-024-00718-w","DOIUrl":null,"url":null,"abstract":"<p>Ensemble learning is a powerful technique for combining multiple classifiers to achieve improved performance. However, the challenge of applying ensemble learning to dynamic and diverse data, such as text in sentiment analysis, has limited its effectiveness. In this paper, we propose a novel reinforcement learning-based method for integrating base learners in sentiment analysis. Our method modifies the influence of base learners on the ensemble output based on the problem space, without requiring prior knowledge of the input domain. This approach effectively manages the dynamic behavior of data to achieve greater efficiency and accuracy. Unlike similar methods, our approach eliminates the need for basic knowledge about the input domain. Our experimental results demonstrate the robust performance of the proposed method compared to traditional methods of base learner integration. The significant improvement in various evaluation criteria highlights the effectiveness of our method in handling diverse data behavior. Overall, our work contributes a novel reinforcement learning-based approach to improve the effectiveness of ensemble learning in sentiment analysis.</p>","PeriodicalId":49064,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","volume":"41 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Enhanced Ensemble Learning Method for Sentiment Analysis based on Q-learning\",\"authors\":\"Mohammad Savargiv, Behrooz Masoumi, Mohammad Reza Keyvanpour\",\"doi\":\"10.1007/s40998-024-00718-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ensemble learning is a powerful technique for combining multiple classifiers to achieve improved performance. However, the challenge of applying ensemble learning to dynamic and diverse data, such as text in sentiment analysis, has limited its effectiveness. In this paper, we propose a novel reinforcement learning-based method for integrating base learners in sentiment analysis. Our method modifies the influence of base learners on the ensemble output based on the problem space, without requiring prior knowledge of the input domain. This approach effectively manages the dynamic behavior of data to achieve greater efficiency and accuracy. Unlike similar methods, our approach eliminates the need for basic knowledge about the input domain. Our experimental results demonstrate the robust performance of the proposed method compared to traditional methods of base learner integration. The significant improvement in various evaluation criteria highlights the effectiveness of our method in handling diverse data behavior. Overall, our work contributes a novel reinforcement learning-based approach to improve the effectiveness of ensemble learning in sentiment analysis.</p>\",\"PeriodicalId\":49064,\"journal\":{\"name\":\"Iranian Journal of Science and Technology-Transactions of Electrical Engineering\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology-Transactions of Electrical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40998-024-00718-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40998-024-00718-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

集合学习是一种强大的技术,可将多个分类器结合起来以提高性能。然而,将集合学习应用于动态和多样化数据(如情感分析中的文本)所面临的挑战限制了其有效性。在本文中,我们提出了一种基于强化学习的新方法,用于在情感分析中整合基础学习器。我们的方法基于问题空间来修改基础学习器对集合输出的影响,而无需事先了解输入领域。这种方法能有效管理数据的动态行为,从而提高效率和准确性。与类似方法不同的是,我们的方法无需输入领域的基本知识。我们的实验结果表明,与传统的基础学习器整合方法相比,我们提出的方法具有强大的性能。各种评估标准的明显改善凸显了我们的方法在处理各种数据行为时的有效性。总之,我们的工作为提高情感分析中的集合学习效率贡献了一种基于强化学习的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Enhanced Ensemble Learning Method for Sentiment Analysis based on Q-learning

Ensemble learning is a powerful technique for combining multiple classifiers to achieve improved performance. However, the challenge of applying ensemble learning to dynamic and diverse data, such as text in sentiment analysis, has limited its effectiveness. In this paper, we propose a novel reinforcement learning-based method for integrating base learners in sentiment analysis. Our method modifies the influence of base learners on the ensemble output based on the problem space, without requiring prior knowledge of the input domain. This approach effectively manages the dynamic behavior of data to achieve greater efficiency and accuracy. Unlike similar methods, our approach eliminates the need for basic knowledge about the input domain. Our experimental results demonstrate the robust performance of the proposed method compared to traditional methods of base learner integration. The significant improvement in various evaluation criteria highlights the effectiveness of our method in handling diverse data behavior. Overall, our work contributes a novel reinforcement learning-based approach to improve the effectiveness of ensemble learning in sentiment analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
4.20%
发文量
93
审稿时长
>12 weeks
期刊介绍: Transactions of Electrical Engineering is to foster the growth of scientific research in all branches of electrical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities. The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in electrical engineering as well as applications of established techniques to new domains in various electical engineering disciplines such as: Bio electric, Bio mechanics, Bio instrument, Microwaves, Wave Propagation, Communication Theory, Channel Estimation, radar & sonar system, Signal Processing, image processing, Artificial Neural Networks, Data Mining and Machine Learning, Fuzzy Logic and Systems, Fuzzy Control, Optimal & Robust ControlNavigation & Estimation Theory, Power Electronics & Drives, Power Generation & Management The editors will welcome papers from all professors and researchers from universities, research centers, organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.
期刊最新文献
Setting-Less Differential Protection of Power Transformers Based on Wavelet Transform Stacked Denoising Variational Auto Encoder Model for Extractive Web Text Summarization Fault Resilient Ability of Reduced Switches Multi Level Inverter for Off Grid Applications A High Gain and Compact CPW-fed UWB Antenna Based on a Novel Frequency Selective Surface with Angular Stability LAA-D: Lightweight Authentication and Access Control Mechanism with Dual-Data Storage in Cloud-Internet of Things System Using Blockchain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1