{"title":"基于薄片图像处理技术的砂岩力学性能智能估算","authors":"Amin Taheri-Garavand, Yasin Abdi, Ehsan Momeni","doi":"10.1007/s10921-024-01056-x","DOIUrl":null,"url":null,"abstract":"<div><p>Rock strength parameters such as uniaxial compressive strength and modulus of elasticity are crucial parameters in designing rock engineering structures. Owing to the importance of the aforementioned parameters, in this paper, image processing technique is coupled with artificial neural network (ANN) method for assessing the uniaxial compressive strength and modulus of elasticity of sandstones. For this reason, 102 core sandstone samples were prepared. Subsequently petrographic analyses and imaging operation for 102 images were performed. Principal component analysis was then conducted for feature reduction purposes. At last, an ANN model, which received its input data from image processing technique, was constructed for assessing the UCS and E of sandstone samples. Overall, the best performance of the network was obtained when 10 hidden nodes were used. The correlation coefficient (R) values of 0.9722 and 0.97062 for UCS and E, respectively, suggest the feasibility of the proposed model.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"43 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart Estimation of Sandstones Mechanical Properties Based on Thin Section Image Processing Techniques\",\"authors\":\"Amin Taheri-Garavand, Yasin Abdi, Ehsan Momeni\",\"doi\":\"10.1007/s10921-024-01056-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rock strength parameters such as uniaxial compressive strength and modulus of elasticity are crucial parameters in designing rock engineering structures. Owing to the importance of the aforementioned parameters, in this paper, image processing technique is coupled with artificial neural network (ANN) method for assessing the uniaxial compressive strength and modulus of elasticity of sandstones. For this reason, 102 core sandstone samples were prepared. Subsequently petrographic analyses and imaging operation for 102 images were performed. Principal component analysis was then conducted for feature reduction purposes. At last, an ANN model, which received its input data from image processing technique, was constructed for assessing the UCS and E of sandstone samples. Overall, the best performance of the network was obtained when 10 hidden nodes were used. The correlation coefficient (R) values of 0.9722 and 0.97062 for UCS and E, respectively, suggest the feasibility of the proposed model.</p></div>\",\"PeriodicalId\":655,\"journal\":{\"name\":\"Journal of Nondestructive Evaluation\",\"volume\":\"43 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10921-024-01056-x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-024-01056-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
摘要
单轴抗压强度和弹性模量等岩石强度参数是设计岩石工程结构的关键参数。鉴于上述参数的重要性,本文将图像处理技术与人工神经网络(ANN)方法相结合,用于评估砂岩的单轴抗压强度和弹性模量。为此,本文制备了 102 个砂岩岩芯样本。随后对 102 幅图像进行了岩相分析和成像操作。然后进行主成分分析以减少特征。最后,构建了一个从图像处理技术中获取输入数据的 ANN 模型,用于评估砂岩样本的 UCS 和 E。总体而言,当使用 10 个隐藏节点时,网络的性能最佳。UCS 和 E 的相关系数 (R) 值分别为 0.9722 和 0.97062,这表明所提议的模型是可行的。
Smart Estimation of Sandstones Mechanical Properties Based on Thin Section Image Processing Techniques
Rock strength parameters such as uniaxial compressive strength and modulus of elasticity are crucial parameters in designing rock engineering structures. Owing to the importance of the aforementioned parameters, in this paper, image processing technique is coupled with artificial neural network (ANN) method for assessing the uniaxial compressive strength and modulus of elasticity of sandstones. For this reason, 102 core sandstone samples were prepared. Subsequently petrographic analyses and imaging operation for 102 images were performed. Principal component analysis was then conducted for feature reduction purposes. At last, an ANN model, which received its input data from image processing technique, was constructed for assessing the UCS and E of sandstone samples. Overall, the best performance of the network was obtained when 10 hidden nodes were used. The correlation coefficient (R) values of 0.9722 and 0.97062 for UCS and E, respectively, suggest the feasibility of the proposed model.
期刊介绍:
Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.