{"title":"论缺陷预测中较低的召回率和精确率对指导基于搜索的软件测试的影响","authors":"Anjana Perera, Burak Turhan, Aldeida Aleti, Marcel Böhme","doi":"10.1145/3655022","DOIUrl":null,"url":null,"abstract":"<p>Defect predictors, static bug detectors and humans inspecting the code can propose locations in the program that are more likely to be buggy before they are discovered through testing. Automated test generators such as search-based software testing (SBST) techniques can use this information to direct their search for test cases to likely-buggy code, thus speeding up the process of detecting existing bugs in those locations. Often the predictions given by these tools or humans are imprecise, which can misguide the SBST technique and may deteriorate its performance. In this paper, we study the impact of imprecision in defect prediction on the bug detection effectiveness of SBST. </p><p>Our study finds that the recall of the defect predictor, i.e., the proportion of correctly identified buggy code, has a significant impact on bug detection effectiveness of SBST with a large effect size. More precisely, the SBST technique detects 7.5 fewer bugs on average (out of 420 bugs) for every 5% decrements of the recall. On the other hand, the effect of precision, a measure for false alarms, is not of meaningful practical significance as indicated by a very small effect size. </p><p>In the context of combining defect prediction and SBST, our recommendation is to increase the recall of defect predictors as a primary objective and precision as a secondary objective. In our experiments, we find that 75% precision is as good as 100% precision. To account for the imprecision of defect predictors, in particular low recall values, SBST techniques should be designed to search for test cases that also cover the predicted non-buggy parts of the program, while prioritising the parts that have been predicted as buggy.</p>","PeriodicalId":50933,"journal":{"name":"ACM Transactions on Software Engineering and Methodology","volume":"39 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Impact of Lower Recall and Precision in Defect Prediction for Guiding Search-Based Software Testing\",\"authors\":\"Anjana Perera, Burak Turhan, Aldeida Aleti, Marcel Böhme\",\"doi\":\"10.1145/3655022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Defect predictors, static bug detectors and humans inspecting the code can propose locations in the program that are more likely to be buggy before they are discovered through testing. Automated test generators such as search-based software testing (SBST) techniques can use this information to direct their search for test cases to likely-buggy code, thus speeding up the process of detecting existing bugs in those locations. Often the predictions given by these tools or humans are imprecise, which can misguide the SBST technique and may deteriorate its performance. In this paper, we study the impact of imprecision in defect prediction on the bug detection effectiveness of SBST. </p><p>Our study finds that the recall of the defect predictor, i.e., the proportion of correctly identified buggy code, has a significant impact on bug detection effectiveness of SBST with a large effect size. More precisely, the SBST technique detects 7.5 fewer bugs on average (out of 420 bugs) for every 5% decrements of the recall. On the other hand, the effect of precision, a measure for false alarms, is not of meaningful practical significance as indicated by a very small effect size. </p><p>In the context of combining defect prediction and SBST, our recommendation is to increase the recall of defect predictors as a primary objective and precision as a secondary objective. In our experiments, we find that 75% precision is as good as 100% precision. To account for the imprecision of defect predictors, in particular low recall values, SBST techniques should be designed to search for test cases that also cover the predicted non-buggy parts of the program, while prioritising the parts that have been predicted as buggy.</p>\",\"PeriodicalId\":50933,\"journal\":{\"name\":\"ACM Transactions on Software Engineering and Methodology\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Software Engineering and Methodology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3655022\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Software Engineering and Methodology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3655022","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
On the Impact of Lower Recall and Precision in Defect Prediction for Guiding Search-Based Software Testing
Defect predictors, static bug detectors and humans inspecting the code can propose locations in the program that are more likely to be buggy before they are discovered through testing. Automated test generators such as search-based software testing (SBST) techniques can use this information to direct their search for test cases to likely-buggy code, thus speeding up the process of detecting existing bugs in those locations. Often the predictions given by these tools or humans are imprecise, which can misguide the SBST technique and may deteriorate its performance. In this paper, we study the impact of imprecision in defect prediction on the bug detection effectiveness of SBST.
Our study finds that the recall of the defect predictor, i.e., the proportion of correctly identified buggy code, has a significant impact on bug detection effectiveness of SBST with a large effect size. More precisely, the SBST technique detects 7.5 fewer bugs on average (out of 420 bugs) for every 5% decrements of the recall. On the other hand, the effect of precision, a measure for false alarms, is not of meaningful practical significance as indicated by a very small effect size.
In the context of combining defect prediction and SBST, our recommendation is to increase the recall of defect predictors as a primary objective and precision as a secondary objective. In our experiments, we find that 75% precision is as good as 100% precision. To account for the imprecision of defect predictors, in particular low recall values, SBST techniques should be designed to search for test cases that also cover the predicted non-buggy parts of the program, while prioritising the parts that have been predicted as buggy.
期刊介绍:
Designing and building a large, complex software system is a tremendous challenge. ACM Transactions on Software Engineering and Methodology (TOSEM) publishes papers on all aspects of that challenge: specification, design, development and maintenance. It covers tools and methodologies, languages, data structures, and algorithms. TOSEM also reports on successful efforts, noting practical lessons that can be scaled and transferred to other projects, and often looks at applications of innovative technologies. The tone is scholarly but readable; the content is worthy of study; the presentation is effective.