用曲妥珠单抗治疗 HER2 过度表达乳腺癌脑转移瘤的 Fab疗法

IF 9.4 1区 医学 Q1 HEMATOLOGY Experimental Hematology & Oncology Pub Date : 2024-04-15 DOI:10.1186/s40164-024-00513-7
Eurydice Angeli, Justine Paris, Olivier Le Tilly, Céline Desvignes, Guillaume Gapihan, Didier Boquet, Frédéric Pamoukdjian, Diaddin Hamdan, Marthe Rigal, Florence Poirier, Didier Lutomski, Feriel Azibani, Alexandre Mebazaa, Amaury Herbet, Aloïse Mabondzo, Géraldine Falgarone, Anne Janin, Gilles Paintaud, Guilhem Bousquet
{"title":"用曲妥珠单抗治疗 HER2 过度表达乳腺癌脑转移瘤的 Fab疗法","authors":"Eurydice Angeli, Justine Paris, Olivier Le Tilly, Céline Desvignes, Guillaume Gapihan, Didier Boquet, Frédéric Pamoukdjian, Diaddin Hamdan, Marthe Rigal, Florence Poirier, Didier Lutomski, Feriel Azibani, Alexandre Mebazaa, Amaury Herbet, Aloïse Mabondzo, Géraldine Falgarone, Anne Janin, Gilles Paintaud, Guilhem Bousquet","doi":"10.1186/s40164-024-00513-7","DOIUrl":null,"url":null,"abstract":"Despite major therapeutic advances for two decades, including the most recently approved anti-HER2 drugs, brain metastatic localizations remain the major cause of death for women with metastatic HER2 breast cancer. The main reason is the limited drug passage of the blood-brain barrier after intravenous injection and the significant efflux of drugs, including monoclocal antibodies, after administration into the cerebrospinal fluid. We hypothesized that this efflux was linked to the presence of a FcRn receptor in the blood-brain barrier. To overcome this efflux, we engineered two Fab fragments of trastuzumab, an anti-HER2 monoclonal antibody, and did a thorough preclinical development for therapeutic translational purpose. We demonstrated the safety and equal efficacy of the Fabs with trastuzumab in vitro, and in vivo using a patient-derived xenograft model of HER2 overexpressing breast cancer. For the pharmacokinetic studies of intra-cerebrospinal fluid administration, we implemented original rat models with catheter implanted into the cisterna magna. After intraventricular administration in rats, we demonstrated that the brain-to-blood efflux of Fab was up to 10 times lower than for trastuzumab, associated with a two-fold higher brain penetration compared to trastuzumab. This Fab, capable of significantly reducing brain-to-blood efflux and enhancing brain penetration after intra-cerebrospinal fluid injection, could thus be a new and original effective drug in the treatment of HER2 breast cancer brain metastases, which will be demonstrated by a phase I clinical trial dedicated to women in resort situations. ","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fab of trastuzumab to treat HER2 overexpressing breast cancer brain metastases\",\"authors\":\"Eurydice Angeli, Justine Paris, Olivier Le Tilly, Céline Desvignes, Guillaume Gapihan, Didier Boquet, Frédéric Pamoukdjian, Diaddin Hamdan, Marthe Rigal, Florence Poirier, Didier Lutomski, Feriel Azibani, Alexandre Mebazaa, Amaury Herbet, Aloïse Mabondzo, Géraldine Falgarone, Anne Janin, Gilles Paintaud, Guilhem Bousquet\",\"doi\":\"10.1186/s40164-024-00513-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite major therapeutic advances for two decades, including the most recently approved anti-HER2 drugs, brain metastatic localizations remain the major cause of death for women with metastatic HER2 breast cancer. The main reason is the limited drug passage of the blood-brain barrier after intravenous injection and the significant efflux of drugs, including monoclocal antibodies, after administration into the cerebrospinal fluid. We hypothesized that this efflux was linked to the presence of a FcRn receptor in the blood-brain barrier. To overcome this efflux, we engineered two Fab fragments of trastuzumab, an anti-HER2 monoclonal antibody, and did a thorough preclinical development for therapeutic translational purpose. We demonstrated the safety and equal efficacy of the Fabs with trastuzumab in vitro, and in vivo using a patient-derived xenograft model of HER2 overexpressing breast cancer. For the pharmacokinetic studies of intra-cerebrospinal fluid administration, we implemented original rat models with catheter implanted into the cisterna magna. After intraventricular administration in rats, we demonstrated that the brain-to-blood efflux of Fab was up to 10 times lower than for trastuzumab, associated with a two-fold higher brain penetration compared to trastuzumab. This Fab, capable of significantly reducing brain-to-blood efflux and enhancing brain penetration after intra-cerebrospinal fluid injection, could thus be a new and original effective drug in the treatment of HER2 breast cancer brain metastases, which will be demonstrated by a phase I clinical trial dedicated to women in resort situations. \",\"PeriodicalId\":12180,\"journal\":{\"name\":\"Experimental Hematology & Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Hematology & Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40164-024-00513-7\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40164-024-00513-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尽管二十年来在治疗方面取得了重大进展,包括最近批准的抗 HER2 药物,但脑转移灶仍是转移性 HER2 乳腺癌女性患者的主要死因。主要原因是静脉注射后药物通过血脑屏障的能力有限,而且药物(包括单克隆抗体)在进入脑脊液后会大量外流。我们假设这种外流与血脑屏障中存在 FcRn 受体有关。为了克服这种外流现象,我们设计了两种抗 HER2 单克隆抗体曲妥珠单抗的 Fab 片段,并为治疗转化目的进行了全面的临床前开发。我们在体外和体内使用源自患者的 HER2 过度表达乳腺癌异种移植模型证明了 Fabs 与曲妥珠单抗的安全性和同等疗效。在脑脊液内给药的药代动力学研究中,我们采用了将导管植入大鼠脑室的原始大鼠模型。在大鼠脑室内给药后,我们证实法布从脑到血液的外流比曲妥珠单抗低 10 倍,脑穿透力比曲妥珠单抗高 2 倍。因此,这种能够显著降低脑脊液内注射后的脑-血外流并增强脑穿透力的 Fab 可以成为治疗 HER2 乳腺癌脑转移的一种新的原创有效药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Fab of trastuzumab to treat HER2 overexpressing breast cancer brain metastases
Despite major therapeutic advances for two decades, including the most recently approved anti-HER2 drugs, brain metastatic localizations remain the major cause of death for women with metastatic HER2 breast cancer. The main reason is the limited drug passage of the blood-brain barrier after intravenous injection and the significant efflux of drugs, including monoclocal antibodies, after administration into the cerebrospinal fluid. We hypothesized that this efflux was linked to the presence of a FcRn receptor in the blood-brain barrier. To overcome this efflux, we engineered two Fab fragments of trastuzumab, an anti-HER2 monoclonal antibody, and did a thorough preclinical development for therapeutic translational purpose. We demonstrated the safety and equal efficacy of the Fabs with trastuzumab in vitro, and in vivo using a patient-derived xenograft model of HER2 overexpressing breast cancer. For the pharmacokinetic studies of intra-cerebrospinal fluid administration, we implemented original rat models with catheter implanted into the cisterna magna. After intraventricular administration in rats, we demonstrated that the brain-to-blood efflux of Fab was up to 10 times lower than for trastuzumab, associated with a two-fold higher brain penetration compared to trastuzumab. This Fab, capable of significantly reducing brain-to-blood efflux and enhancing brain penetration after intra-cerebrospinal fluid injection, could thus be a new and original effective drug in the treatment of HER2 breast cancer brain metastases, which will be demonstrated by a phase I clinical trial dedicated to women in resort situations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.60
自引率
7.30%
发文量
97
审稿时长
6 weeks
期刊介绍: Experimental Hematology & Oncology is an open access journal that encompasses all aspects of hematology and oncology with an emphasis on preclinical, basic, patient-oriented and translational research. The journal acts as an international platform for sharing laboratory findings in these areas and makes a deliberate effort to publish clinical trials with 'negative' results and basic science studies with provocative findings. Experimental Hematology & Oncology publishes original work, hypothesis, commentaries and timely reviews. With open access and rapid turnaround time from submission to publication, the journal strives to be a hub for disseminating new knowledge and discussing controversial topics for both basic scientists and busy clinicians in the closely related fields of hematology and oncology.
期刊最新文献
Nuclear porcupine mediates XRCC6/Ku70 S-palmitoylation in the DNA damage response. Crosstalk between O-GlcNAcylation and ubiquitination: a novel strategy for overcoming cancer therapeutic resistance. Vertical targeting of the PI3K/AKT pathway at multiple points is synergistic and effective for non-Hodgkin lymphoma. Advances in adoptive cellular immunotherapy and therapeutic breakthroughs in multiple myeloma. Spatial immunogenomic patterns associated with lymph node metastasis in lung adenocarcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1