{"title":"最小残留病的泛癌症转录图谱将 DUSP1 与化疗持久性联系起来","authors":"Yuanhui Liu, Bi Peng, Ziqi Chen, Yimin Shen, Jingmin Zhang, Xianglin Yuan","doi":"10.1186/s40164-024-00509-3","DOIUrl":null,"url":null,"abstract":"Chemotherapy is a commonly effective treatment for most types of cancer. However, many patients experience a relapse due to minimal residual disease (MRD) after chemotherapy. Previous studies have analyzed the changes induced by chemotherapy for specific types of cancer, but our study is the first to comprehensively analyze MRD across various types of cancer. We included both bulk and single-cell RNA sequencing datasets. We compared the expression of the entire genome and calculated scores for canonical pathway signatures and immune infiltrates before and after chemotherapy across different types of cancer. Our findings revealed that DUSP1 was the most significantly and widely enriched gene in pan-cancer MRD. DUSP1 was found to be essential for MRD formation and played a role in T cell-fibroblast communications and the cytotoxic function of CD4 + T cells. Overall, our analysis provides a comprehensive understanding of the changes caused by chemotherapy and identifies potential targets for preventing and eliminating MRD, which could lead to long-term survival benefits for patients.","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pan-cancer transcriptional atlas of minimal residual disease links DUSP1 to chemotherapy persistence\",\"authors\":\"Yuanhui Liu, Bi Peng, Ziqi Chen, Yimin Shen, Jingmin Zhang, Xianglin Yuan\",\"doi\":\"10.1186/s40164-024-00509-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemotherapy is a commonly effective treatment for most types of cancer. However, many patients experience a relapse due to minimal residual disease (MRD) after chemotherapy. Previous studies have analyzed the changes induced by chemotherapy for specific types of cancer, but our study is the first to comprehensively analyze MRD across various types of cancer. We included both bulk and single-cell RNA sequencing datasets. We compared the expression of the entire genome and calculated scores for canonical pathway signatures and immune infiltrates before and after chemotherapy across different types of cancer. Our findings revealed that DUSP1 was the most significantly and widely enriched gene in pan-cancer MRD. DUSP1 was found to be essential for MRD formation and played a role in T cell-fibroblast communications and the cytotoxic function of CD4 + T cells. Overall, our analysis provides a comprehensive understanding of the changes caused by chemotherapy and identifies potential targets for preventing and eliminating MRD, which could lead to long-term survival benefits for patients.\",\"PeriodicalId\":12180,\"journal\":{\"name\":\"Experimental Hematology & Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Hematology & Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40164-024-00509-3\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40164-024-00509-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Pan-cancer transcriptional atlas of minimal residual disease links DUSP1 to chemotherapy persistence
Chemotherapy is a commonly effective treatment for most types of cancer. However, many patients experience a relapse due to minimal residual disease (MRD) after chemotherapy. Previous studies have analyzed the changes induced by chemotherapy for specific types of cancer, but our study is the first to comprehensively analyze MRD across various types of cancer. We included both bulk and single-cell RNA sequencing datasets. We compared the expression of the entire genome and calculated scores for canonical pathway signatures and immune infiltrates before and after chemotherapy across different types of cancer. Our findings revealed that DUSP1 was the most significantly and widely enriched gene in pan-cancer MRD. DUSP1 was found to be essential for MRD formation and played a role in T cell-fibroblast communications and the cytotoxic function of CD4 + T cells. Overall, our analysis provides a comprehensive understanding of the changes caused by chemotherapy and identifies potential targets for preventing and eliminating MRD, which could lead to long-term survival benefits for patients.
期刊介绍:
Experimental Hematology & Oncology is an open access journal that encompasses all aspects of hematology and oncology with an emphasis on preclinical, basic, patient-oriented and translational research. The journal acts as an international platform for sharing laboratory findings in these areas and makes a deliberate effort to publish clinical trials with 'negative' results and basic science studies with provocative findings.
Experimental Hematology & Oncology publishes original work, hypothesis, commentaries and timely reviews. With open access and rapid turnaround time from submission to publication, the journal strives to be a hub for disseminating new knowledge and discussing controversial topics for both basic scientists and busy clinicians in the closely related fields of hematology and oncology.