质粒蛋白 OsGER4 参与了由叶绿素介导的水稻冠根发育过程

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-04-06 DOI:10.1007/s12374-024-09424-w
Thi Trang Nguyen, The Dan Pham, Phat Tien Do, Kieu Thi Xuan Vo, Thi Van Anh Le, Tuan Anh Tran, Hoang Ha Chu, Jong-Seong Jeon, Huong Thi Mai To
{"title":"质粒蛋白 OsGER4 参与了由叶绿素介导的水稻冠根发育过程","authors":"Thi Trang Nguyen, The Dan Pham, Phat Tien Do, Kieu Thi Xuan Vo, Thi Van Anh Le, Tuan Anh Tran, Hoang Ha Chu, Jong-Seong Jeon, Huong Thi Mai To","doi":"10.1007/s12374-024-09424-w","DOIUrl":null,"url":null,"abstract":"<p>In rice (<i>Oryza sativa</i> L.), the root system plays different essential roles, from water and nutrient uptake to responding to environmental signals. The mechanisms underlying root development are complex and involve many phytohormones, of which auxin is the most important. This study investigates the involvement of OsGER4, a putative Germin-like protein, in auxin-mediated crown root development in rice. The expression study of <i>OsGER4</i> in the <i>crl1</i> mutant confirms that OsGER4 is connected to the CRL1 signaling pathway- a master regulator for crown root development. Transgenic rice carrying the <i>promGER4::GUS</i> reporter gene revealed that <i>OsGER4</i> is mainly expressed in the initiation and emergence zone of the crown and lateral root, such as epidermal cell, vasculature, and primordia under auxin treatment condition. Moreover, fewer crown roots of <i>osger4</i> knockout mutant lines than the wild type under auxin treatment suggests that OsGER4 might function as a regulator limiting auxin flux to root growth regions under stress conditions. Besides, protein localization experiments confirmed that OsGER4 localizes to plasmodesmata, which are intercellular channels that could facilitate auxin transport. Our findings suggest that OsGER4 might play a substantial role in regulating plasmodesmata conformation to regulate auxin flow resulting in crown root developmental in rice under stress conditions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Plasmodesmal Protein OsGER4 is Involved in Auxin Mediated Crown Root Development in Rice\",\"authors\":\"Thi Trang Nguyen, The Dan Pham, Phat Tien Do, Kieu Thi Xuan Vo, Thi Van Anh Le, Tuan Anh Tran, Hoang Ha Chu, Jong-Seong Jeon, Huong Thi Mai To\",\"doi\":\"10.1007/s12374-024-09424-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In rice (<i>Oryza sativa</i> L.), the root system plays different essential roles, from water and nutrient uptake to responding to environmental signals. The mechanisms underlying root development are complex and involve many phytohormones, of which auxin is the most important. This study investigates the involvement of OsGER4, a putative Germin-like protein, in auxin-mediated crown root development in rice. The expression study of <i>OsGER4</i> in the <i>crl1</i> mutant confirms that OsGER4 is connected to the CRL1 signaling pathway- a master regulator for crown root development. Transgenic rice carrying the <i>promGER4::GUS</i> reporter gene revealed that <i>OsGER4</i> is mainly expressed in the initiation and emergence zone of the crown and lateral root, such as epidermal cell, vasculature, and primordia under auxin treatment condition. Moreover, fewer crown roots of <i>osger4</i> knockout mutant lines than the wild type under auxin treatment suggests that OsGER4 might function as a regulator limiting auxin flux to root growth regions under stress conditions. Besides, protein localization experiments confirmed that OsGER4 localizes to plasmodesmata, which are intercellular channels that could facilitate auxin transport. Our findings suggest that OsGER4 might play a substantial role in regulating plasmodesmata conformation to regulate auxin flow resulting in crown root developmental in rice under stress conditions.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12374-024-09424-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12374-024-09424-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在水稻(Oryza sativa L.)中,根系发挥着不同的重要作用,从吸收水分和养分到响应环境信号。根系发育的内在机制非常复杂,涉及多种植物激素,其中最重要的是辅助素。本研究探讨了OsGER4(一种推定的Germin样蛋白)参与辅酶介导的水稻冠根发育的情况。对 OsGER4 在 crl1 突变体中的表达研究证实,OsGER4 与冠根发育的主调节因子 CRL1 信号通路有关。携带promGER4::GUS报告基因的转基因水稻发现,在辅助素处理条件下,OsGER4主要在冠根和侧根的起始和萌发区表达,如表皮细胞、脉管和初生根。此外,Osger4基因敲除突变株的冠根数量少于野生型,这表明OsGER4可能是胁迫条件下限制根系生长区域的辅素通量的调节因子。此外,蛋白质定位实验证实,OsGER4 定位于质膜,而质膜是细胞间通道,可促进辅素运输。我们的研究结果表明,OsGER4在胁迫条件下可能在调节质膜构象以调节辅素流量从而导致水稻冠根发育方面发挥了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Plasmodesmal Protein OsGER4 is Involved in Auxin Mediated Crown Root Development in Rice

In rice (Oryza sativa L.), the root system plays different essential roles, from water and nutrient uptake to responding to environmental signals. The mechanisms underlying root development are complex and involve many phytohormones, of which auxin is the most important. This study investigates the involvement of OsGER4, a putative Germin-like protein, in auxin-mediated crown root development in rice. The expression study of OsGER4 in the crl1 mutant confirms that OsGER4 is connected to the CRL1 signaling pathway- a master regulator for crown root development. Transgenic rice carrying the promGER4::GUS reporter gene revealed that OsGER4 is mainly expressed in the initiation and emergence zone of the crown and lateral root, such as epidermal cell, vasculature, and primordia under auxin treatment condition. Moreover, fewer crown roots of osger4 knockout mutant lines than the wild type under auxin treatment suggests that OsGER4 might function as a regulator limiting auxin flux to root growth regions under stress conditions. Besides, protein localization experiments confirmed that OsGER4 localizes to plasmodesmata, which are intercellular channels that could facilitate auxin transport. Our findings suggest that OsGER4 might play a substantial role in regulating plasmodesmata conformation to regulate auxin flow resulting in crown root developmental in rice under stress conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1