词汇和语义决策中语义访问的数学模型

IF 1.1 3区 心理学 0 LANGUAGE & LINGUISTICS Language and Cognition Pub Date : 2024-04-11 DOI:10.1017/langcog.2024.17
Sergio E. Chaigneau, Nicolás Marchant, Enrique Canessa, Nerea Aldunate
{"title":"词汇和语义决策中语义访问的数学模型","authors":"Sergio E. Chaigneau, Nicolás Marchant, Enrique Canessa, Nerea Aldunate","doi":"10.1017/langcog.2024.17","DOIUrl":null,"url":null,"abstract":"In this work, we use a mathematical model of the property listing task dynamics and test its ability to predict processing time in semantic and lexical decision tasks. The study aims at exploring the temporal dynamics of semantic access in these tasks and showing that the mathematical model captures essential aspects of semantic access, beyond the original task for which it was developed. In two studies using the semantic and lexical decision tasks, we used the mathematical model’s coefficients to predict reaction times. Results showed that the model was able to predict processing time in both tasks, accounting for an independent portion of the total variance, relative to variance predicted by traditional psycholinguistic variables (i.e., frequency, familiarity, concreteness imageability). Overall, this study provides evidence of the mathematical model’s validity and generality, and offers insights regarding the characterization of concrete and abstract words.","PeriodicalId":45880,"journal":{"name":"Language and Cognition","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mathematical model of semantic access in lexical and semantic decisions\",\"authors\":\"Sergio E. Chaigneau, Nicolás Marchant, Enrique Canessa, Nerea Aldunate\",\"doi\":\"10.1017/langcog.2024.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we use a mathematical model of the property listing task dynamics and test its ability to predict processing time in semantic and lexical decision tasks. The study aims at exploring the temporal dynamics of semantic access in these tasks and showing that the mathematical model captures essential aspects of semantic access, beyond the original task for which it was developed. In two studies using the semantic and lexical decision tasks, we used the mathematical model’s coefficients to predict reaction times. Results showed that the model was able to predict processing time in both tasks, accounting for an independent portion of the total variance, relative to variance predicted by traditional psycholinguistic variables (i.e., frequency, familiarity, concreteness imageability). Overall, this study provides evidence of the mathematical model’s validity and generality, and offers insights regarding the characterization of concrete and abstract words.\",\"PeriodicalId\":45880,\"journal\":{\"name\":\"Language and Cognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Language and Cognition\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1017/langcog.2024.17\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"LANGUAGE & LINGUISTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Language and Cognition","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1017/langcog.2024.17","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们使用了一个列出任务动态属性的数学模型,并测试了该模型在语义和词汇决策任务中预测处理时间的能力。这项研究旨在探索这些任务中语义获取的时间动态,并证明该数学模型捕捉到了语义获取的重要方面,而不仅仅是其最初开发时所针对的任务。在两项使用语义和词汇决策任务的研究中,我们使用数学模型的系数来预测反应时间。结果表明,相对于传统心理语言变量(即频率、熟悉程度、具体形象性)所预测的方差,该模型能够预测这两项任务的处理时间,并占总方差的独立部分。总之,这项研究证明了数学模型的有效性和普遍性,并为具体词和抽象词的特征描述提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A mathematical model of semantic access in lexical and semantic decisions
In this work, we use a mathematical model of the property listing task dynamics and test its ability to predict processing time in semantic and lexical decision tasks. The study aims at exploring the temporal dynamics of semantic access in these tasks and showing that the mathematical model captures essential aspects of semantic access, beyond the original task for which it was developed. In two studies using the semantic and lexical decision tasks, we used the mathematical model’s coefficients to predict reaction times. Results showed that the model was able to predict processing time in both tasks, accounting for an independent portion of the total variance, relative to variance predicted by traditional psycholinguistic variables (i.e., frequency, familiarity, concreteness imageability). Overall, this study provides evidence of the mathematical model’s validity and generality, and offers insights regarding the characterization of concrete and abstract words.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
34
期刊最新文献
Multimodal training on L2 Japanese pitch accent: learning outcomes, neural correlates and subjective assessments Head metonymies and metaphors in Jordanian and Tunisian Arabic: an extended conceptual metaphor theory perspective Facial expressions in different communication settings: A case of whispering and speaking with a face mask in Farsi The effect of emotional prosody and referent characteristics on novel noun learning Inherent linguistic preference outcompetes incidental alignment in cooperative partner choice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1