纳入 ESG 因素的年均房价时间序列的对数模型

Jason R. Bailey, W. Brent Lindquist, Svetlozar T. Rachev
{"title":"纳入 ESG 因素的年均房价时间序列的对数模型","authors":"Jason R. Bailey, W. Brent Lindquist, Svetlozar T. Rachev","doi":"arxiv-2404.07132","DOIUrl":null,"url":null,"abstract":"Using data from 2000 through 2022, we analyze the predictive capability of\nthe annual numbers of new home constructions and four available environmental,\nsocial, and governance factors on the average annual price of homes sold in\neight major U.S. cities. We contrast the predictive capability of a P-spline\ngeneralized additive model (GAM) against a strictly linear version of the\ncommonly used generalized linear model (GLM). As the data for the annual price\nand predictor variables constitute non-stationary time series, to avoid\nspurious correlations in the analysis we transform each time series\nappropriately to produce stationary series for use in the GAM and GLM models.\nWhile arithmetic returns or first differences are adequate transformations for\nthe predictor variables, for the average price response variable we utilize the\nseries of innovations obtained from AR(q)-ARCH(1) fits. Based on the GAM\nresults, we find that the influence of ESG factors varies markedly by city,\nreflecting geographic diversity. Notably, the presence of air conditioning\nemerges as a strong factor. Despite limitations on the length of available time\nseries, this study represents a pivotal step toward integrating ESG\nconsiderations into predictive real estate models.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"84 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hedonic Models Incorporating ESG Factors for Time Series of Average Annual Home Prices\",\"authors\":\"Jason R. Bailey, W. Brent Lindquist, Svetlozar T. Rachev\",\"doi\":\"arxiv-2404.07132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using data from 2000 through 2022, we analyze the predictive capability of\\nthe annual numbers of new home constructions and four available environmental,\\nsocial, and governance factors on the average annual price of homes sold in\\neight major U.S. cities. We contrast the predictive capability of a P-spline\\ngeneralized additive model (GAM) against a strictly linear version of the\\ncommonly used generalized linear model (GLM). As the data for the annual price\\nand predictor variables constitute non-stationary time series, to avoid\\nspurious correlations in the analysis we transform each time series\\nappropriately to produce stationary series for use in the GAM and GLM models.\\nWhile arithmetic returns or first differences are adequate transformations for\\nthe predictor variables, for the average price response variable we utilize the\\nseries of innovations obtained from AR(q)-ARCH(1) fits. Based on the GAM\\nresults, we find that the influence of ESG factors varies markedly by city,\\nreflecting geographic diversity. Notably, the presence of air conditioning\\nemerges as a strong factor. Despite limitations on the length of available time\\nseries, this study represents a pivotal step toward integrating ESG\\nconsiderations into predictive real estate models.\",\"PeriodicalId\":501294,\"journal\":{\"name\":\"arXiv - QuantFin - Computational Finance\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Computational Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.07132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.07132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用 2000 年至 2022 年的数据,我们分析了每年新房建设数量以及四个可用的环境、社会和治理因素对美国八个主要城市房屋年平均销售价格的预测能力。我们对比了 P 样条广义加法模型(GAM)与常用广义线性模型(GLM)的严格线性版本的预测能力。由于年度价格和预测变量的数据构成了非平稳时间序列,为了避免分析中出现虚假的相关性,我们对每个时间序列进行了适当的转换,以产生平稳序列,供 GAM 和 GLM 模型使用。根据 GAM 结果,我们发现 ESG 因素的影响因城市而异,这反映了地域多样性。值得注意的是,空调的存在是一个强有力的因素。尽管受到可用时间序列长度的限制,但这项研究代表了将环境、社会和治理因素纳入房地产预测模型的关键一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hedonic Models Incorporating ESG Factors for Time Series of Average Annual Home Prices
Using data from 2000 through 2022, we analyze the predictive capability of the annual numbers of new home constructions and four available environmental, social, and governance factors on the average annual price of homes sold in eight major U.S. cities. We contrast the predictive capability of a P-spline generalized additive model (GAM) against a strictly linear version of the commonly used generalized linear model (GLM). As the data for the annual price and predictor variables constitute non-stationary time series, to avoid spurious correlations in the analysis we transform each time series appropriately to produce stationary series for use in the GAM and GLM models. While arithmetic returns or first differences are adequate transformations for the predictor variables, for the average price response variable we utilize the series of innovations obtained from AR(q)-ARCH(1) fits. Based on the GAM results, we find that the influence of ESG factors varies markedly by city, reflecting geographic diversity. Notably, the presence of air conditioning emerges as a strong factor. Despite limitations on the length of available time series, this study represents a pivotal step toward integrating ESG considerations into predictive real estate models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A deep primal-dual BSDE method for optimal stopping problems Robust financial calibration: a Bayesian approach for neural SDEs MANA-Net: Mitigating Aggregated Sentiment Homogenization with News Weighting for Enhanced Market Prediction QuantFactor REINFORCE: Mining Steady Formulaic Alpha Factors with Variance-bounded REINFORCE Signature of maturity in cryptocurrency volatility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1