将脂肪酶固定在中药银纳米粒子上并检测固定化酶的生化参数

IF 1.5 4区 工程技术 Q3 ENGINEERING, CHEMICAL Brazilian Journal of Chemical Engineering Pub Date : 2024-04-12 DOI:10.1007/s43153-024-00460-0
Atefeh Nasiri, Marzieh Ghollasi, Khadijeh Eskandari, Elahe Darvishi
{"title":"将脂肪酶固定在中药银纳米粒子上并检测固定化酶的生化参数","authors":"Atefeh Nasiri, Marzieh Ghollasi, Khadijeh Eskandari, Elahe Darvishi","doi":"10.1007/s43153-024-00460-0","DOIUrl":null,"url":null,"abstract":"<p>Nanoparticles are useful for immobilization due to their size and physical properties. The present study aimed to synthesize herbal silver nanoparticles (SNPs) to immobilize the lipase from <i>Candida rugosa</i> covalently on the nanoparticles as well as to examine the biochemical parameters of the immobilized enzyme. SNPs were synthesized using <i>Cydonia oblonga</i> leaf extract and were characterized. Lipase enzyme was immobilized on synthesized SNPs and the immobilization efficiency was calculated. The biochemical properties of immobilized and free enzymes, including the temperature effect and pH on enzymatic activity, thermal stability, storage stability, and reusability of the immobilized enzyme were specified. Electron microscopy, DLS measurements, and Raman spectroscopy confirmed the 50 nm SNPs and the immobilization of lipase enzyme on them. The efficiency of lipase enzyme immobilization on nanoparticles was estimated to be 48%. The free enzymes and immobilized enzymes had the highest activity at 37°C and 55°C, respectively. Also, the optimal pH was 7 for the free enzyme and 6 for the immobilized enzyme. A comparison of thermal and storage stability of free and immobilized enzymes suggested that immobilized enzymes had more stability and resistance than free enzymes as they also could be reused up to 12 times. The kinetic parameters of the immobilized enzyme compared to the free enzyme indicated a slight decrease in the maximum rate of the enzyme. Immobilized enzymes can be used in industries and are also very crucial for commercial use as they are cost-effective.</p>","PeriodicalId":9194,"journal":{"name":"Brazilian Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immobilization of lipase enzyme onto herbal silver nanoparticles and examination of biochemical parameters of immobilized enzyme\",\"authors\":\"Atefeh Nasiri, Marzieh Ghollasi, Khadijeh Eskandari, Elahe Darvishi\",\"doi\":\"10.1007/s43153-024-00460-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanoparticles are useful for immobilization due to their size and physical properties. The present study aimed to synthesize herbal silver nanoparticles (SNPs) to immobilize the lipase from <i>Candida rugosa</i> covalently on the nanoparticles as well as to examine the biochemical parameters of the immobilized enzyme. SNPs were synthesized using <i>Cydonia oblonga</i> leaf extract and were characterized. Lipase enzyme was immobilized on synthesized SNPs and the immobilization efficiency was calculated. The biochemical properties of immobilized and free enzymes, including the temperature effect and pH on enzymatic activity, thermal stability, storage stability, and reusability of the immobilized enzyme were specified. Electron microscopy, DLS measurements, and Raman spectroscopy confirmed the 50 nm SNPs and the immobilization of lipase enzyme on them. The efficiency of lipase enzyme immobilization on nanoparticles was estimated to be 48%. The free enzymes and immobilized enzymes had the highest activity at 37°C and 55°C, respectively. Also, the optimal pH was 7 for the free enzyme and 6 for the immobilized enzyme. A comparison of thermal and storage stability of free and immobilized enzymes suggested that immobilized enzymes had more stability and resistance than free enzymes as they also could be reused up to 12 times. The kinetic parameters of the immobilized enzyme compared to the free enzyme indicated a slight decrease in the maximum rate of the enzyme. Immobilized enzymes can be used in industries and are also very crucial for commercial use as they are cost-effective.</p>\",\"PeriodicalId\":9194,\"journal\":{\"name\":\"Brazilian Journal of Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s43153-024-00460-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43153-024-00460-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

纳米颗粒因其尺寸和物理特性而可用于固定化。本研究旨在合成中草药银纳米粒子(SNPs),以在纳米粒子上共价固定白色念珠菌脂肪酶,并检测固定化酶的生化参数。SNP 是用 Cydonia oblonga 叶提取物合成的,并对其进行了表征。脂肪酶被固定在合成的 SNPs 上,并计算了固定效率。研究了固定化酶和游离酶的生化特性,包括温度效应和 pH 值对酶活性的影响、固定化酶的热稳定性、储存稳定性和重复使用性。电子显微镜、DLS 测量和拉曼光谱证实了 50 纳米 SNP 及其上脂肪酶的固定化。脂肪酶固定在纳米颗粒上的效率估计为 48%。游离酶和固定化酶分别在 37°C 和 55°C 时活性最高。此外,游离酶的最佳 pH 值为 7,固定化酶的最佳 pH 值为 6。对游离酶和固定化酶的热稳定性和储存稳定性的比较表明,固定化酶比游离酶具有更高的稳定性和耐受性,因为它们还可以重复使用多达 12 次。与游离酶相比,固定化酶的动力学参数表明,酶的最大速率略有下降。固定化酶可用于工业,由于其成本效益高,在商业用途中也非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Immobilization of lipase enzyme onto herbal silver nanoparticles and examination of biochemical parameters of immobilized enzyme

Nanoparticles are useful for immobilization due to their size and physical properties. The present study aimed to synthesize herbal silver nanoparticles (SNPs) to immobilize the lipase from Candida rugosa covalently on the nanoparticles as well as to examine the biochemical parameters of the immobilized enzyme. SNPs were synthesized using Cydonia oblonga leaf extract and were characterized. Lipase enzyme was immobilized on synthesized SNPs and the immobilization efficiency was calculated. The biochemical properties of immobilized and free enzymes, including the temperature effect and pH on enzymatic activity, thermal stability, storage stability, and reusability of the immobilized enzyme were specified. Electron microscopy, DLS measurements, and Raman spectroscopy confirmed the 50 nm SNPs and the immobilization of lipase enzyme on them. The efficiency of lipase enzyme immobilization on nanoparticles was estimated to be 48%. The free enzymes and immobilized enzymes had the highest activity at 37°C and 55°C, respectively. Also, the optimal pH was 7 for the free enzyme and 6 for the immobilized enzyme. A comparison of thermal and storage stability of free and immobilized enzymes suggested that immobilized enzymes had more stability and resistance than free enzymes as they also could be reused up to 12 times. The kinetic parameters of the immobilized enzyme compared to the free enzyme indicated a slight decrease in the maximum rate of the enzyme. Immobilized enzymes can be used in industries and are also very crucial for commercial use as they are cost-effective.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brazilian Journal of Chemical Engineering
Brazilian Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
2.50
自引率
0.00%
发文量
84
审稿时长
6.8 months
期刊介绍: The Brazilian Journal of Chemical Engineering is a quarterly publication of the Associação Brasileira de Engenharia Química (Brazilian Society of Chemical Engineering - ABEQ) aiming at publishing papers reporting on basic and applied research and innovation in the field of chemical engineering and related areas.
期刊最新文献
C4 hydrocarbons to value-added chemicals over Keggin-type heteropolyacids: structure-properties, reaction parameters, and mechanisms Utilization of blue light-emitting diodes in Ensifer meliloti cultivation for enhanced production of antioxidant biopolymers Correlation of the solubility of isoniazid in some aqueous cosolvent mixtures using different mathematical models Doehlert matrix-based optimization of degradation of Rhodamine B in a swirling flow photolytic reactor operated in recirculation mode Application of DieselB10 formulations with short-chain alcohols in diesel cycle engines: phase equilibrium, physicochemical and thermodynamic properties and power curves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1