厄尔尼诺/南方涛动数据集和用于厄尔尼诺/南方涛动预报的深度学习模型比较

IF 2.7 4区 地球科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Earth Science Informatics Pub Date : 2024-04-10 DOI:10.1007/s12145-024-01295-6
Shabana Mir, Masood Ahmad Arbab, Sadaqat ur Rehman
{"title":"厄尔尼诺/南方涛动数据集和用于厄尔尼诺/南方涛动预报的深度学习模型比较","authors":"Shabana Mir, Masood Ahmad Arbab, Sadaqat ur Rehman","doi":"10.1007/s12145-024-01295-6","DOIUrl":null,"url":null,"abstract":"<p>Forecasting the El Nino-Southern Oscillation (ENSO) is a challenging task in climatology. It is one of the main factors responsible for the Earth’s interannual climatic fluctuation and can result in many climatic anomalies. The impacts include natural disasters (floods, droughts), low &amp; high agriculture yields, price fluctuation, energy demand, availability of water resources, animal movement, and many more. This study presents a comprehensive ENSO dataset containing standard indicators and other relevant data to facilitate ENSO analysis and forecasting. To ensure the dataset's validity and reliability, we performed extensive data analysis and trained four basic deep models for time series forecasting (i.e. CNN, RNN, LSTM, and hybrids). The data analysis confirmed the accuracy and suitability of the dataset for ENSO forecasting. The LSTM model achieved the best fit to the data, leading to superior performance in forecasting ENSO events.</p>","PeriodicalId":49318,"journal":{"name":"Earth Science Informatics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ENSO dataset & comparison of deep learning models for ENSO forecasting\",\"authors\":\"Shabana Mir, Masood Ahmad Arbab, Sadaqat ur Rehman\",\"doi\":\"10.1007/s12145-024-01295-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Forecasting the El Nino-Southern Oscillation (ENSO) is a challenging task in climatology. It is one of the main factors responsible for the Earth’s interannual climatic fluctuation and can result in many climatic anomalies. The impacts include natural disasters (floods, droughts), low &amp; high agriculture yields, price fluctuation, energy demand, availability of water resources, animal movement, and many more. This study presents a comprehensive ENSO dataset containing standard indicators and other relevant data to facilitate ENSO analysis and forecasting. To ensure the dataset's validity and reliability, we performed extensive data analysis and trained four basic deep models for time series forecasting (i.e. CNN, RNN, LSTM, and hybrids). The data analysis confirmed the accuracy and suitability of the dataset for ENSO forecasting. The LSTM model achieved the best fit to the data, leading to superior performance in forecasting ENSO events.</p>\",\"PeriodicalId\":49318,\"journal\":{\"name\":\"Earth Science Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Science Informatics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s12145-024-01295-6\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Science Informatics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12145-024-01295-6","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

预测厄尔尼诺-南方涛动(ENSO)是气候学中一项具有挑战性的任务。它是造成地球年际气候波动的主要因素之一,可导致许多气候异常现象。其影响包括自然灾害(洪水、干旱)、低&;农业高产、价格波动、能源需求、水资源供应、动物移动等。本研究提出了一个包含标准指标和其他相关数据的厄尔尼诺/南方涛动综合数据集,以促进厄尔尼诺/南方涛动的分析和预测。为确保数据集的有效性和可靠性,我们进行了广泛的数据分析,并训练了四种用于时间序列预测的基本深度模型(即 CNN、RNN、LSTM 和混合模型)。数据分析证实了厄尔尼诺/南方涛动预报数据集的准确性和适用性。LSTM 模型实现了与数据的最佳拟合,从而在预测厄尔尼诺/南方涛动事件方面表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ENSO dataset & comparison of deep learning models for ENSO forecasting

Forecasting the El Nino-Southern Oscillation (ENSO) is a challenging task in climatology. It is one of the main factors responsible for the Earth’s interannual climatic fluctuation and can result in many climatic anomalies. The impacts include natural disasters (floods, droughts), low & high agriculture yields, price fluctuation, energy demand, availability of water resources, animal movement, and many more. This study presents a comprehensive ENSO dataset containing standard indicators and other relevant data to facilitate ENSO analysis and forecasting. To ensure the dataset's validity and reliability, we performed extensive data analysis and trained four basic deep models for time series forecasting (i.e. CNN, RNN, LSTM, and hybrids). The data analysis confirmed the accuracy and suitability of the dataset for ENSO forecasting. The LSTM model achieved the best fit to the data, leading to superior performance in forecasting ENSO events.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth Science Informatics
Earth Science Informatics COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
4.60
自引率
3.60%
发文量
157
审稿时长
4.3 months
期刊介绍: The Earth Science Informatics [ESIN] journal aims at rapid publication of high-quality, current, cutting-edge, and provocative scientific work in the area of Earth Science Informatics as it relates to Earth systems science and space science. This includes articles on the application of formal and computational methods, computational Earth science, spatial and temporal analyses, and all aspects of computer applications to the acquisition, storage, processing, interchange, and visualization of data and information about the materials, properties, processes, features, and phenomena that occur at all scales and locations in the Earth system’s five components (atmosphere, hydrosphere, geosphere, biosphere, cryosphere) and in space (see "About this journal" for more detail). The quarterly journal publishes research, methodology, and software articles, as well as editorials, comments, and book and software reviews. Review articles of relevant findings, topics, and methodologies are also considered.
期刊最新文献
Ontology-driven relational data mapping for constructing a knowledge graph of porphyry copper deposits A novel machine learning approach for interpolating seismic velocity and electrical resistivity models for early-stage soil-rock assessment ENSO dataset & comparison of deep learning models for ENSO forecasting Groundwater level estimation using improved deep learning and soft computing methods CEDG-GeoQA: Knowledge base question answering for the geoscience domain via Chinese entity description graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1