Valerio La Gatta, Vincenzo Moscato, Marco Postiglione, Giancarlo Sperlì
{"title":"大数据架构上的易懂人工智能方法论","authors":"Valerio La Gatta, Vincenzo Moscato, Marco Postiglione, Giancarlo Sperlì","doi":"10.1007/s12559-024-10272-6","DOIUrl":null,"url":null,"abstract":"<p>Although artificial intelligence has become part of everyone’s real life, a trust crisis against such systems is occurring, thus increasing the need to explain black-box predictions, especially in the military, medical, and financial domains. Modern eXplainable Artificial Intelligence (XAI) techniques focus on benchmark datasets, but the cognitive applicability of such solutions under big data settings is still unclear due to memory or computation constraints. In this paper, we extend a model-agnostic XAI methodology, named <i>Cluster-Aided Space Transformation for Local Explanation</i> (CASTLE), to be able to deal with high-volume datasets. CASTLE aims to explain the black-box behavior of predictive models by combining both <i>local</i> (i.e., based on the input sample) and <i>global</i> (i.e., based on the whole scope for action of the model) information. In particular, the local explanation provides a rule-based explanation for the prediction of a target instance as well as the directions to update the likelihood of the predicted class. Our extension leverages modern big data technologies (e.g., Apache Spark) to handle the high volume, variety, and velocity of huge datasets. We have evaluated the framework on five datasets, in terms of temporal efficiency, explanation quality, and model significance. Our results indicate that the proposed approach retains the high-quality explanations associated with CASTLE while efficiently handling large datasets. Importantly, it exhibits a sub-linear, rather than exponential, dependence on dataset size, making it a scalable solution for massive datasets or in any big data scenario.</p>","PeriodicalId":51243,"journal":{"name":"Cognitive Computation","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An eXplainable Artificial Intelligence Methodology on Big Data Architecture\",\"authors\":\"Valerio La Gatta, Vincenzo Moscato, Marco Postiglione, Giancarlo Sperlì\",\"doi\":\"10.1007/s12559-024-10272-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Although artificial intelligence has become part of everyone’s real life, a trust crisis against such systems is occurring, thus increasing the need to explain black-box predictions, especially in the military, medical, and financial domains. Modern eXplainable Artificial Intelligence (XAI) techniques focus on benchmark datasets, but the cognitive applicability of such solutions under big data settings is still unclear due to memory or computation constraints. In this paper, we extend a model-agnostic XAI methodology, named <i>Cluster-Aided Space Transformation for Local Explanation</i> (CASTLE), to be able to deal with high-volume datasets. CASTLE aims to explain the black-box behavior of predictive models by combining both <i>local</i> (i.e., based on the input sample) and <i>global</i> (i.e., based on the whole scope for action of the model) information. In particular, the local explanation provides a rule-based explanation for the prediction of a target instance as well as the directions to update the likelihood of the predicted class. Our extension leverages modern big data technologies (e.g., Apache Spark) to handle the high volume, variety, and velocity of huge datasets. We have evaluated the framework on five datasets, in terms of temporal efficiency, explanation quality, and model significance. Our results indicate that the proposed approach retains the high-quality explanations associated with CASTLE while efficiently handling large datasets. Importantly, it exhibits a sub-linear, rather than exponential, dependence on dataset size, making it a scalable solution for massive datasets or in any big data scenario.</p>\",\"PeriodicalId\":51243,\"journal\":{\"name\":\"Cognitive Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12559-024-10272-6\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12559-024-10272-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An eXplainable Artificial Intelligence Methodology on Big Data Architecture
Although artificial intelligence has become part of everyone’s real life, a trust crisis against such systems is occurring, thus increasing the need to explain black-box predictions, especially in the military, medical, and financial domains. Modern eXplainable Artificial Intelligence (XAI) techniques focus on benchmark datasets, but the cognitive applicability of such solutions under big data settings is still unclear due to memory or computation constraints. In this paper, we extend a model-agnostic XAI methodology, named Cluster-Aided Space Transformation for Local Explanation (CASTLE), to be able to deal with high-volume datasets. CASTLE aims to explain the black-box behavior of predictive models by combining both local (i.e., based on the input sample) and global (i.e., based on the whole scope for action of the model) information. In particular, the local explanation provides a rule-based explanation for the prediction of a target instance as well as the directions to update the likelihood of the predicted class. Our extension leverages modern big data technologies (e.g., Apache Spark) to handle the high volume, variety, and velocity of huge datasets. We have evaluated the framework on five datasets, in terms of temporal efficiency, explanation quality, and model significance. Our results indicate that the proposed approach retains the high-quality explanations associated with CASTLE while efficiently handling large datasets. Importantly, it exhibits a sub-linear, rather than exponential, dependence on dataset size, making it a scalable solution for massive datasets or in any big data scenario.
期刊介绍:
Cognitive Computation is an international, peer-reviewed, interdisciplinary journal that publishes cutting-edge articles describing original basic and applied work involving biologically-inspired computational accounts of all aspects of natural and artificial cognitive systems. It provides a new platform for the dissemination of research, current practices and future trends in the emerging discipline of cognitive computation that bridges the gap between life sciences, social sciences, engineering, physical and mathematical sciences, and humanities.