求助PDF
{"title":"利用手性酸性分子印迹聚合物对(±)-肾上腺素进行对映选择性分离","authors":"Fatimah A Alotaibi","doi":"10.1002/pi.6638","DOIUrl":null,"url":null,"abstract":"<p>In this study, we look into how poly[(4-styrenesulfonic acid)-<i>co</i>-(4-vinylpyridine)] crosslinked with divinylbenzene can be used as a copolymeric material to effectively recognize <span>l</span>-epinephrine (L-EP) and chirally separate (±)-EP. It was first possible to synthesize and analyze L-EP-styrene-4-sulfonamide (L-EP-SSA). The resulting chiral sulfonamide was used to copolymerize with a 4-vinylpyridine–divinylbenzene mixture. The integrated L-EP species were removed by heating the polymer materials under strong alkaline conditions to degrade the sulfonamide links, followed by acidification in HCl solution. The imprinted L-EP-IP materials were analyzed using Fourier transform infrared spectroscopy and scanning electron microscopy. The produced L-EP-IP displayed selectivity characteristics indicative of an affinity for L-EP almost eleven times higher than that for <span>d</span>-epinephrine (D-EP). At a pH of 7, Langmuir adsorption experiments demonstrated a maximal capacity of 165 mg g<sup>−1</sup>. Following optical separation by means of a column method, enantiomeric excess levels of L- and D-EP in the initial feeding and subsequent recovering solutions were calculated to be 93% and 80%, respectively. © 2024 Society of Industrial Chemistry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"73 9","pages":"695-704"},"PeriodicalIF":2.9000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enantioselective separation of (±)-epinephrine by chiral acidic molecularly imprinted polymer\",\"authors\":\"Fatimah A Alotaibi\",\"doi\":\"10.1002/pi.6638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we look into how poly[(4-styrenesulfonic acid)-<i>co</i>-(4-vinylpyridine)] crosslinked with divinylbenzene can be used as a copolymeric material to effectively recognize <span>l</span>-epinephrine (L-EP) and chirally separate (±)-EP. It was first possible to synthesize and analyze L-EP-styrene-4-sulfonamide (L-EP-SSA). The resulting chiral sulfonamide was used to copolymerize with a 4-vinylpyridine–divinylbenzene mixture. The integrated L-EP species were removed by heating the polymer materials under strong alkaline conditions to degrade the sulfonamide links, followed by acidification in HCl solution. The imprinted L-EP-IP materials were analyzed using Fourier transform infrared spectroscopy and scanning electron microscopy. The produced L-EP-IP displayed selectivity characteristics indicative of an affinity for L-EP almost eleven times higher than that for <span>d</span>-epinephrine (D-EP). At a pH of 7, Langmuir adsorption experiments demonstrated a maximal capacity of 165 mg g<sup>−1</sup>. Following optical separation by means of a column method, enantiomeric excess levels of L- and D-EP in the initial feeding and subsequent recovering solutions were calculated to be 93% and 80%, respectively. © 2024 Society of Industrial Chemistry.</p>\",\"PeriodicalId\":20404,\"journal\":{\"name\":\"Polymer International\",\"volume\":\"73 9\",\"pages\":\"695-704\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer International\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pi.6638\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer International","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pi.6638","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
引用
批量引用