一阶优化方法建模的随机微分方程

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED SIAM Journal on Optimization Pub Date : 2024-04-11 DOI:10.1137/21m1435665
M. Dambrine, Ch. Dossal, B. Puig, A. Rondepierre
{"title":"一阶优化方法建模的随机微分方程","authors":"M. Dambrine, Ch. Dossal, B. Puig, A. Rondepierre","doi":"10.1137/21m1435665","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 2, Page 1402-1426, June 2024. <br/>Abstract. In this article, a family of SDEs are derived as a tool to understand the behavior of numerical optimization methods under random evaluations of the gradient. Our objective is to transpose the introduction of continuous versions through ODEs to understand the asymptotic behavior of a discrete optimization scheme to the stochastic setting. We consider a continuous version of the stochastic gradient scheme and of a stochastic inertial system. This article first studies the quality of the approximation of the discrete scheme by an SDE when the step size tends to 0. Then, it presents new asymptotic bounds on the values [math], where [math] is a solution of the SDE and [math], when [math] is convex and under integrability conditions on the noise. Results are provided under two sets of hypotheses: first considering [math] and convex functions and then adding some geometrical properties of [math]. All of these results provide insight on the behavior of these inertial and perturbed algorithms in the setting of stochastic algorithms.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic Differential Equations for Modeling First Order Optimization Methods\",\"authors\":\"M. Dambrine, Ch. Dossal, B. Puig, A. Rondepierre\",\"doi\":\"10.1137/21m1435665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Optimization, Volume 34, Issue 2, Page 1402-1426, June 2024. <br/>Abstract. In this article, a family of SDEs are derived as a tool to understand the behavior of numerical optimization methods under random evaluations of the gradient. Our objective is to transpose the introduction of continuous versions through ODEs to understand the asymptotic behavior of a discrete optimization scheme to the stochastic setting. We consider a continuous version of the stochastic gradient scheme and of a stochastic inertial system. This article first studies the quality of the approximation of the discrete scheme by an SDE when the step size tends to 0. Then, it presents new asymptotic bounds on the values [math], where [math] is a solution of the SDE and [math], when [math] is convex and under integrability conditions on the noise. Results are provided under two sets of hypotheses: first considering [math] and convex functions and then adding some geometrical properties of [math]. All of these results provide insight on the behavior of these inertial and perturbed algorithms in the setting of stochastic algorithms.\",\"PeriodicalId\":49529,\"journal\":{\"name\":\"SIAM Journal on Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1435665\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/21m1435665","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 优化期刊》,第 34 卷第 2 期,第 1402-1426 页,2024 年 6 月。摘要本文导出了一系列 SDEs,作为理解梯度随机评估下数值优化方法行为的工具。我们的目的是通过 ODEs 将连续版本的引入转置到随机环境中,以理解离散优化方案的渐近行为。我们考虑了随机梯度方案的连续版本和随机惯性系统。本文首先研究了当步长趋近于 0 时,离散方案与 SDE 的近似质量。然后,本文提出了[math](其中[math]是 SDE 的一个解)和[math](其中[math]是凸的,并且在噪声的可整性条件下)值的新渐近约束。我们提供了两组假设下的结果:首先考虑 [math] 和凸函数,然后添加 [math] 的一些几何特性。所有这些结果都有助于深入了解这些惯性算法和扰动算法在随机算法环境下的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stochastic Differential Equations for Modeling First Order Optimization Methods
SIAM Journal on Optimization, Volume 34, Issue 2, Page 1402-1426, June 2024.
Abstract. In this article, a family of SDEs are derived as a tool to understand the behavior of numerical optimization methods under random evaluations of the gradient. Our objective is to transpose the introduction of continuous versions through ODEs to understand the asymptotic behavior of a discrete optimization scheme to the stochastic setting. We consider a continuous version of the stochastic gradient scheme and of a stochastic inertial system. This article first studies the quality of the approximation of the discrete scheme by an SDE when the step size tends to 0. Then, it presents new asymptotic bounds on the values [math], where [math] is a solution of the SDE and [math], when [math] is convex and under integrability conditions on the noise. Results are provided under two sets of hypotheses: first considering [math] and convex functions and then adding some geometrical properties of [math]. All of these results provide insight on the behavior of these inertial and perturbed algorithms in the setting of stochastic algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
期刊最新文献
Corrigendum and Addendum: Newton Differentiability of Convex Functions in Normed Spaces and of a Class of Operators Newton-Based Alternating Methods for the Ground State of a Class of Multicomponent Bose–Einstein Condensates Minimum Spanning Trees in Infinite Graphs: Theory and Algorithms On Minimal Extended Representations of Generalized Power Cones A Functional Model Method for Nonconvex Nonsmooth Conditional Stochastic Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1