求助PDF
{"title":"用生物基阻燃剂改善环氧树脂的加工性和机械性能","authors":"Yuning Gong, Lanyue Zhang, Jiahuan He, Baiyu Liu, Lu Wang, Yuhui Ao, Yu Liu, Lei Shang","doi":"10.1002/pi.6639","DOIUrl":null,"url":null,"abstract":"<p>Integrating flame-retardant additives into epoxy resins is an essential strategy for improving their fire resistance. However, introducing flame-retardant groups often compromises the processability and mechanical integrity of such resins. In this research, we synthesized a novel, biobased flame retardant, referred to as DPN, using naringenin and chlorodiphenylphosphine as precursors via a straightforward single-step process. The addition of DPN markedly decreased the viscosity of hydantoin epoxy resin, from 7468 to 1285 mPa s. Furthermore, when cured with 4,4-diaminodiphenylmethane, the composite containing five equivalents of DPN (DPN-5) exhibited a marked improvement in mechanical strength, reaching 190 MPa, significantly outperforming the pure thermoset (DPN-0: 104 MPa), while preserving high transparency. Combustion tests further confirmed that DPN significantly boosts the flame resistance of the thermoset, with DPN-5 achieving a limiting oxygen index of 37% and securing a UL-94 V-0 rating. Cone calorimetry analysis showed that DPN-5 effectively reduced heat and smoke production during combustion, achieving a 13.4% reduction in peak heat release rate and a 28.2% decrease in total heat release compared to DPN-0. This study underscores the potential of multifunctional biobased flame retardants derived from renewable resources in advancing the development of high-performance materials. © 2024 Society of Industrial Chemistry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"73 8","pages":"646-657"},"PeriodicalIF":2.9000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving processability and mechanical properties of epoxy resins with biobased flame retardants\",\"authors\":\"Yuning Gong, Lanyue Zhang, Jiahuan He, Baiyu Liu, Lu Wang, Yuhui Ao, Yu Liu, Lei Shang\",\"doi\":\"10.1002/pi.6639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Integrating flame-retardant additives into epoxy resins is an essential strategy for improving their fire resistance. However, introducing flame-retardant groups often compromises the processability and mechanical integrity of such resins. In this research, we synthesized a novel, biobased flame retardant, referred to as DPN, using naringenin and chlorodiphenylphosphine as precursors via a straightforward single-step process. The addition of DPN markedly decreased the viscosity of hydantoin epoxy resin, from 7468 to 1285 mPa s. Furthermore, when cured with 4,4-diaminodiphenylmethane, the composite containing five equivalents of DPN (DPN-5) exhibited a marked improvement in mechanical strength, reaching 190 MPa, significantly outperforming the pure thermoset (DPN-0: 104 MPa), while preserving high transparency. Combustion tests further confirmed that DPN significantly boosts the flame resistance of the thermoset, with DPN-5 achieving a limiting oxygen index of 37% and securing a UL-94 V-0 rating. Cone calorimetry analysis showed that DPN-5 effectively reduced heat and smoke production during combustion, achieving a 13.4% reduction in peak heat release rate and a 28.2% decrease in total heat release compared to DPN-0. This study underscores the potential of multifunctional biobased flame retardants derived from renewable resources in advancing the development of high-performance materials. © 2024 Society of Industrial Chemistry.</p>\",\"PeriodicalId\":20404,\"journal\":{\"name\":\"Polymer International\",\"volume\":\"73 8\",\"pages\":\"646-657\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer International\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pi.6639\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer International","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pi.6639","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
引用
批量引用