Elizabeth Cooper, Cristina Charlton-Perez, Rich Ellis
{"title":"英国气象局区域土壤水分模型与 COSMOS-UK 实地观测数据的比较","authors":"Elizabeth Cooper, Cristina Charlton-Perez, Rich Ellis","doi":"10.1002/asl.1236","DOIUrl":null,"url":null,"abstract":"<p>The UK Met Office state-of-the-art, deterministic, convection-permitting, coupled land-atmosphere, regional weather forecasting system, known as the UKV or UK Variable resolution model (Tang et al. <i>Meteorological Applications</i>, 2013; 20:417–426), has been operational since 2015. Science updates are regularly made to the UKV land surface data assimilation scheme when those updates improve predictions of screen temperature and humidity, since these quantities have a direct impact on atmospheric states and weather forecasts. Less attention has been paid to whether UKV soil moisture analyses are close to independent, in-situ soil moisture observations, partly because it is difficult to make meaningful comparisons between 1.5 km<sup>2</sup> gridded model outputs and traditional point sensor measurements. Soil moisture is recognized to be important when hydrological forecasts for runoff and rivers are required. This is because soil moisture controls the extent to which rainfall can infiltrate the soil, and the amount of surface runoff affects the timing of peak river flows (Ward & Robinson, <i>Principles of Hydrology</i>. McGraw-Hill Publishing Company; 2000; Singh et al. <i>Water Resources Research</i>, 2021, 57, e2020WR028827). Gómez et al. (<i>Remote Sensing</i>, 2020; 12:3691) report benefits to river flow forecasts when using soil moisture data assimilation in the UKV system instead of a daily downscaled product from the Met Office global model. The Met Office measures soil temperature and soil moisture at Cardington (Osborne & Weedon, <i>Journal of Hydrometeorology</i>, 2021, 22:279–295); there is no other UK Met Office site at which soil moisture is measured. In this study, we use field-scale (~200 m radius) soil moisture measurements from the UK Centre for Ecology and Hydrology's (UKCEH's) COSMOS-UK network to provide independent verification and analysis of UKV soil moisture during summer 2018, an unusually dry period in the United Kingdom. We find that the match to COSMOS-UK soil moisture observations is generally good, and that changes made to the land data assimilation approach during a recent operational upgrade had a generally beneficial impact on UKV soil moisture analyses under very dry conditions.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":"25 8","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1236","citationCount":"0","resultStr":"{\"title\":\"Comparison of Met Office regional model soil moisture with COSMOS-UK field-scale in situ observations\",\"authors\":\"Elizabeth Cooper, Cristina Charlton-Perez, Rich Ellis\",\"doi\":\"10.1002/asl.1236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The UK Met Office state-of-the-art, deterministic, convection-permitting, coupled land-atmosphere, regional weather forecasting system, known as the UKV or UK Variable resolution model (Tang et al. <i>Meteorological Applications</i>, 2013; 20:417–426), has been operational since 2015. Science updates are regularly made to the UKV land surface data assimilation scheme when those updates improve predictions of screen temperature and humidity, since these quantities have a direct impact on atmospheric states and weather forecasts. Less attention has been paid to whether UKV soil moisture analyses are close to independent, in-situ soil moisture observations, partly because it is difficult to make meaningful comparisons between 1.5 km<sup>2</sup> gridded model outputs and traditional point sensor measurements. Soil moisture is recognized to be important when hydrological forecasts for runoff and rivers are required. This is because soil moisture controls the extent to which rainfall can infiltrate the soil, and the amount of surface runoff affects the timing of peak river flows (Ward & Robinson, <i>Principles of Hydrology</i>. McGraw-Hill Publishing Company; 2000; Singh et al. <i>Water Resources Research</i>, 2021, 57, e2020WR028827). Gómez et al. (<i>Remote Sensing</i>, 2020; 12:3691) report benefits to river flow forecasts when using soil moisture data assimilation in the UKV system instead of a daily downscaled product from the Met Office global model. The Met Office measures soil temperature and soil moisture at Cardington (Osborne & Weedon, <i>Journal of Hydrometeorology</i>, 2021, 22:279–295); there is no other UK Met Office site at which soil moisture is measured. In this study, we use field-scale (~200 m radius) soil moisture measurements from the UK Centre for Ecology and Hydrology's (UKCEH's) COSMOS-UK network to provide independent verification and analysis of UKV soil moisture during summer 2018, an unusually dry period in the United Kingdom. We find that the match to COSMOS-UK soil moisture observations is generally good, and that changes made to the land data assimilation approach during a recent operational upgrade had a generally beneficial impact on UKV soil moisture analyses under very dry conditions.</p>\",\"PeriodicalId\":50734,\"journal\":{\"name\":\"Atmospheric Science Letters\",\"volume\":\"25 8\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1236\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asl.1236\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1236","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Comparison of Met Office regional model soil moisture with COSMOS-UK field-scale in situ observations
The UK Met Office state-of-the-art, deterministic, convection-permitting, coupled land-atmosphere, regional weather forecasting system, known as the UKV or UK Variable resolution model (Tang et al. Meteorological Applications, 2013; 20:417–426), has been operational since 2015. Science updates are regularly made to the UKV land surface data assimilation scheme when those updates improve predictions of screen temperature and humidity, since these quantities have a direct impact on atmospheric states and weather forecasts. Less attention has been paid to whether UKV soil moisture analyses are close to independent, in-situ soil moisture observations, partly because it is difficult to make meaningful comparisons between 1.5 km2 gridded model outputs and traditional point sensor measurements. Soil moisture is recognized to be important when hydrological forecasts for runoff and rivers are required. This is because soil moisture controls the extent to which rainfall can infiltrate the soil, and the amount of surface runoff affects the timing of peak river flows (Ward & Robinson, Principles of Hydrology. McGraw-Hill Publishing Company; 2000; Singh et al. Water Resources Research, 2021, 57, e2020WR028827). Gómez et al. (Remote Sensing, 2020; 12:3691) report benefits to river flow forecasts when using soil moisture data assimilation in the UKV system instead of a daily downscaled product from the Met Office global model. The Met Office measures soil temperature and soil moisture at Cardington (Osborne & Weedon, Journal of Hydrometeorology, 2021, 22:279–295); there is no other UK Met Office site at which soil moisture is measured. In this study, we use field-scale (~200 m radius) soil moisture measurements from the UK Centre for Ecology and Hydrology's (UKCEH's) COSMOS-UK network to provide independent verification and analysis of UKV soil moisture during summer 2018, an unusually dry period in the United Kingdom. We find that the match to COSMOS-UK soil moisture observations is generally good, and that changes made to the land data assimilation approach during a recent operational upgrade had a generally beneficial impact on UKV soil moisture analyses under very dry conditions.
期刊介绍:
Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques.
We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.