{"title":"利用磁性氟化多孔碳吸附和去除水溶液中的全氟化合物","authors":"Han-Ying Zhan, You-Ming Lin, Rui-Yang Qin, Zhi-Qi Zhang","doi":"10.1007/s10450-024-00454-x","DOIUrl":null,"url":null,"abstract":"<div><p>Perfluorinated compounds (PFCs) cause environmental pollution and serious health issues. Therefore, magnetic fluorinated porous carbons (M-FPCs) derived from the carbonization and further fluorination of Fe-Zr MOFs were used as novel adsorbents to investigate the possibility of PFC removal from wastewater. Investigation of the adsorption behavior of PFCs on M-FPCs revealed that the isotherms conformed to the Langmuir model and kinetics fit the pseudo-second-order model. Simulations using the Weber–Morris and Boyd diffusion models indicated that the adsorption of PFCs on M-FPCs involved external mass transfer first, followed by intraparticle diffusion, where film diffusion was the primary controlling process. M-FPCs with maximum adsorption ranging from 518.1 to 919.3 mg g<sup>− 1</sup> for studied PFCs were adopted to remove PFCs from simulated wastewaters of textile mill and leather factory. Up to 98.1–100.0% of PFCs were removed within 15 min, and the residual levels of PFCs reached drinking water standards after treatment, which suggests the promising application of M-FPCs in the removal of PFCs from wastewater.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"30 6","pages":"747 - 753"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption and removal of perfluorinated compounds from aqueous solution using magnetic fluorinated porous carbons\",\"authors\":\"Han-Ying Zhan, You-Ming Lin, Rui-Yang Qin, Zhi-Qi Zhang\",\"doi\":\"10.1007/s10450-024-00454-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Perfluorinated compounds (PFCs) cause environmental pollution and serious health issues. Therefore, magnetic fluorinated porous carbons (M-FPCs) derived from the carbonization and further fluorination of Fe-Zr MOFs were used as novel adsorbents to investigate the possibility of PFC removal from wastewater. Investigation of the adsorption behavior of PFCs on M-FPCs revealed that the isotherms conformed to the Langmuir model and kinetics fit the pseudo-second-order model. Simulations using the Weber–Morris and Boyd diffusion models indicated that the adsorption of PFCs on M-FPCs involved external mass transfer first, followed by intraparticle diffusion, where film diffusion was the primary controlling process. M-FPCs with maximum adsorption ranging from 518.1 to 919.3 mg g<sup>− 1</sup> for studied PFCs were adopted to remove PFCs from simulated wastewaters of textile mill and leather factory. Up to 98.1–100.0% of PFCs were removed within 15 min, and the residual levels of PFCs reached drinking water standards after treatment, which suggests the promising application of M-FPCs in the removal of PFCs from wastewater.</p></div>\",\"PeriodicalId\":458,\"journal\":{\"name\":\"Adsorption\",\"volume\":\"30 6\",\"pages\":\"747 - 753\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adsorption\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10450-024-00454-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00454-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Adsorption and removal of perfluorinated compounds from aqueous solution using magnetic fluorinated porous carbons
Perfluorinated compounds (PFCs) cause environmental pollution and serious health issues. Therefore, magnetic fluorinated porous carbons (M-FPCs) derived from the carbonization and further fluorination of Fe-Zr MOFs were used as novel adsorbents to investigate the possibility of PFC removal from wastewater. Investigation of the adsorption behavior of PFCs on M-FPCs revealed that the isotherms conformed to the Langmuir model and kinetics fit the pseudo-second-order model. Simulations using the Weber–Morris and Boyd diffusion models indicated that the adsorption of PFCs on M-FPCs involved external mass transfer first, followed by intraparticle diffusion, where film diffusion was the primary controlling process. M-FPCs with maximum adsorption ranging from 518.1 to 919.3 mg g− 1 for studied PFCs were adopted to remove PFCs from simulated wastewaters of textile mill and leather factory. Up to 98.1–100.0% of PFCs were removed within 15 min, and the residual levels of PFCs reached drinking water standards after treatment, which suggests the promising application of M-FPCs in the removal of PFCs from wastewater.
期刊介绍:
The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news.
Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design.
Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.