Caroline B. C. Almeida, Célia M. Ronconi, Danilo R. H. de Miranda, Isabela A. A. Bessa, Honério C. de Jesus, Priscilla P. Luz
{"title":"MOF-808对商用草甘膦的吸附:一种用于水净化的新型ZrMOF","authors":"Caroline B. C. Almeida, Célia M. Ronconi, Danilo R. H. de Miranda, Isabela A. A. Bessa, Honério C. de Jesus, Priscilla P. Luz","doi":"10.1007/s10450-024-00451-0","DOIUrl":null,"url":null,"abstract":"<div><p>This work reports for the first time the use of MOF-808 for the adsorption of glyphosate from a diluted herbicide formulation (Roundup®). MOF-808 was synthesized in organic solvent (MOF-808(DMF)) or in water (MOF-808(H<sub>2</sub>O)) to compare the influence of textural characteristics on the adsorption process. In addition, the adsorption performances of these materials were compared to those of the UiO-66 and UiO-66(NH<sub>2</sub>) series materials, which have the same SBU, allowing us to evaluate the influence of the topicity and functionalization of the ligand on the adsorption capacity of glyphosate. MOF-808 showed the highest adsorption capacity, reaching a q<sub>max</sub> equal to 277.01 mg g<sup>−1</sup>, and good kinetic performance, removing 70.3% of the glyphosate from solution in 10 min and 99.5% after 3 h of contact. MOFs UiO-66 and UiO-66(NH<sub>2</sub>) had lower q<sub>max</sub> values than MOF-808, possibly due to the blockage of their narrow pores by GLY, which prevents them from accessing Zr sites. The results showed an important relationship between the hydrodynamic diameter and the pore size distribution with access to active sites, consequently influencing the adsorption performance of these porous materials.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"30 6","pages":"813 - 825"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption of commercial glyphosate by MOF-808: a new ZrMOF for water purification\",\"authors\":\"Caroline B. C. Almeida, Célia M. Ronconi, Danilo R. H. de Miranda, Isabela A. A. Bessa, Honério C. de Jesus, Priscilla P. Luz\",\"doi\":\"10.1007/s10450-024-00451-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work reports for the first time the use of MOF-808 for the adsorption of glyphosate from a diluted herbicide formulation (Roundup®). MOF-808 was synthesized in organic solvent (MOF-808(DMF)) or in water (MOF-808(H<sub>2</sub>O)) to compare the influence of textural characteristics on the adsorption process. In addition, the adsorption performances of these materials were compared to those of the UiO-66 and UiO-66(NH<sub>2</sub>) series materials, which have the same SBU, allowing us to evaluate the influence of the topicity and functionalization of the ligand on the adsorption capacity of glyphosate. MOF-808 showed the highest adsorption capacity, reaching a q<sub>max</sub> equal to 277.01 mg g<sup>−1</sup>, and good kinetic performance, removing 70.3% of the glyphosate from solution in 10 min and 99.5% after 3 h of contact. MOFs UiO-66 and UiO-66(NH<sub>2</sub>) had lower q<sub>max</sub> values than MOF-808, possibly due to the blockage of their narrow pores by GLY, which prevents them from accessing Zr sites. The results showed an important relationship between the hydrodynamic diameter and the pore size distribution with access to active sites, consequently influencing the adsorption performance of these porous materials.</p></div>\",\"PeriodicalId\":458,\"journal\":{\"name\":\"Adsorption\",\"volume\":\"30 6\",\"pages\":\"813 - 825\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adsorption\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10450-024-00451-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00451-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Adsorption of commercial glyphosate by MOF-808: a new ZrMOF for water purification
This work reports for the first time the use of MOF-808 for the adsorption of glyphosate from a diluted herbicide formulation (Roundup®). MOF-808 was synthesized in organic solvent (MOF-808(DMF)) or in water (MOF-808(H2O)) to compare the influence of textural characteristics on the adsorption process. In addition, the adsorption performances of these materials were compared to those of the UiO-66 and UiO-66(NH2) series materials, which have the same SBU, allowing us to evaluate the influence of the topicity and functionalization of the ligand on the adsorption capacity of glyphosate. MOF-808 showed the highest adsorption capacity, reaching a qmax equal to 277.01 mg g−1, and good kinetic performance, removing 70.3% of the glyphosate from solution in 10 min and 99.5% after 3 h of contact. MOFs UiO-66 and UiO-66(NH2) had lower qmax values than MOF-808, possibly due to the blockage of their narrow pores by GLY, which prevents them from accessing Zr sites. The results showed an important relationship between the hydrodynamic diameter and the pore size distribution with access to active sites, consequently influencing the adsorption performance of these porous materials.
期刊介绍:
The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news.
Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design.
Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.