Harald Letsch, Sonja Vukotić, Brigitte Gottsberger, Ariel Leib Leonid Friedman, Marek Wanat, Franziska Beran, Konrad Fiedler, Alexander Riedel
{"title":"栉水母象鼻虫(Ceutorhynchinae, Curculionidae)的系统发育:有丝分裂基因组数据提高了部落关系的分辨率","authors":"Harald Letsch, Sonja Vukotić, Brigitte Gottsberger, Ariel Leib Leonid Friedman, Marek Wanat, Franziska Beran, Konrad Fiedler, Alexander Riedel","doi":"10.1111/syen.12635","DOIUrl":null,"url":null,"abstract":"<p>Ceutorhynchinae Gistel are a diverse weevil subfamily of almost worldwide distribution and considerable economic importance. Nevertheless, the classification of Ceutorhynchinae and their phylogenetic relationships are not yet fully resolved. Here, we sequenced the mitogenomes of 54 ceutorhynchine species. Phylogenetic analyses by maximum likelihood and Bayesian inference were performed on a dataset of 13 protein-coding and two ribosomal genes. All analyses recovered three well supported clades A–C. A principal component analysis shows that codon usage differs considerably between these clades, indicating a compositional asymmetry in ceutorhynchine mitogenomes. This increased the challenge of resolving the early relationships among the three clades. The resolution of the later diversification was more robust, and the resulting topologies were largely compatible with each other and with the current taxonomic classification. Exceptions are the genera <i>Micrelus</i> Thomson, which is transferred from the tribe Ceutorhynchini to Egriini Pajni and Kohli (new position) and <i>Amalus</i> Schoenherr, which is transferred to Phytobiini Gistel (new position). Amalini Wagner 1936 is a junior synonym of Phytobiini Gistel 1848 (syn. n.). Coeliodini Lacordaire (new status), a tribe previously regarded as junior synonym of Ceutorhynchini, is re-established. Our analyses also clarified the difficult assignments of taxa to the tribes Scleropterini Schultze and Phytobiini. All taxa with the ability to jump as adult beetles belong to clade B, which comprises the tribes Cnemogonini Colonnelli, Hypurini Schultze, Mecysmoderini Wagner and Phytobiini. With dense taxon sampling and appropriate analytical methods, mitogenome data provide a phylogeny well suited to improve the traditional classification of this neglected and species-rich taxon.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"49 4","pages":"624-634"},"PeriodicalIF":4.7000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/syen.12635","citationCount":"0","resultStr":"{\"title\":\"The phylogeny of ceutorhynchine weevils (Ceutorhynchinae, Curculionidae): Mitogenome data improve the resolution of tribal relationships\",\"authors\":\"Harald Letsch, Sonja Vukotić, Brigitte Gottsberger, Ariel Leib Leonid Friedman, Marek Wanat, Franziska Beran, Konrad Fiedler, Alexander Riedel\",\"doi\":\"10.1111/syen.12635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ceutorhynchinae Gistel are a diverse weevil subfamily of almost worldwide distribution and considerable economic importance. Nevertheless, the classification of Ceutorhynchinae and their phylogenetic relationships are not yet fully resolved. Here, we sequenced the mitogenomes of 54 ceutorhynchine species. Phylogenetic analyses by maximum likelihood and Bayesian inference were performed on a dataset of 13 protein-coding and two ribosomal genes. All analyses recovered three well supported clades A–C. A principal component analysis shows that codon usage differs considerably between these clades, indicating a compositional asymmetry in ceutorhynchine mitogenomes. This increased the challenge of resolving the early relationships among the three clades. The resolution of the later diversification was more robust, and the resulting topologies were largely compatible with each other and with the current taxonomic classification. Exceptions are the genera <i>Micrelus</i> Thomson, which is transferred from the tribe Ceutorhynchini to Egriini Pajni and Kohli (new position) and <i>Amalus</i> Schoenherr, which is transferred to Phytobiini Gistel (new position). Amalini Wagner 1936 is a junior synonym of Phytobiini Gistel 1848 (syn. n.). Coeliodini Lacordaire (new status), a tribe previously regarded as junior synonym of Ceutorhynchini, is re-established. Our analyses also clarified the difficult assignments of taxa to the tribes Scleropterini Schultze and Phytobiini. All taxa with the ability to jump as adult beetles belong to clade B, which comprises the tribes Cnemogonini Colonnelli, Hypurini Schultze, Mecysmoderini Wagner and Phytobiini. With dense taxon sampling and appropriate analytical methods, mitogenome data provide a phylogeny well suited to improve the traditional classification of this neglected and species-rich taxon.</p>\",\"PeriodicalId\":22126,\"journal\":{\"name\":\"Systematic Entomology\",\"volume\":\"49 4\",\"pages\":\"624-634\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/syen.12635\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systematic Entomology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/syen.12635\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Entomology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/syen.12635","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
The phylogeny of ceutorhynchine weevils (Ceutorhynchinae, Curculionidae): Mitogenome data improve the resolution of tribal relationships
Ceutorhynchinae Gistel are a diverse weevil subfamily of almost worldwide distribution and considerable economic importance. Nevertheless, the classification of Ceutorhynchinae and their phylogenetic relationships are not yet fully resolved. Here, we sequenced the mitogenomes of 54 ceutorhynchine species. Phylogenetic analyses by maximum likelihood and Bayesian inference were performed on a dataset of 13 protein-coding and two ribosomal genes. All analyses recovered three well supported clades A–C. A principal component analysis shows that codon usage differs considerably between these clades, indicating a compositional asymmetry in ceutorhynchine mitogenomes. This increased the challenge of resolving the early relationships among the three clades. The resolution of the later diversification was more robust, and the resulting topologies were largely compatible with each other and with the current taxonomic classification. Exceptions are the genera Micrelus Thomson, which is transferred from the tribe Ceutorhynchini to Egriini Pajni and Kohli (new position) and Amalus Schoenherr, which is transferred to Phytobiini Gistel (new position). Amalini Wagner 1936 is a junior synonym of Phytobiini Gistel 1848 (syn. n.). Coeliodini Lacordaire (new status), a tribe previously regarded as junior synonym of Ceutorhynchini, is re-established. Our analyses also clarified the difficult assignments of taxa to the tribes Scleropterini Schultze and Phytobiini. All taxa with the ability to jump as adult beetles belong to clade B, which comprises the tribes Cnemogonini Colonnelli, Hypurini Schultze, Mecysmoderini Wagner and Phytobiini. With dense taxon sampling and appropriate analytical methods, mitogenome data provide a phylogeny well suited to improve the traditional classification of this neglected and species-rich taxon.
期刊介绍:
Systematic Entomology publishes original papers on insect systematics, phylogenetics and integrative taxonomy, with a preference for general interest papers of broad biological, evolutionary or zoogeographical relevance.