Geonwoo Hwang, Jongseok Nam, Minki Kim, David Santiago Diaz Cortes, Ki-Uk Kyung
{"title":"对碰撞敏感的保护性凝胶皮肤:粘弹性聚氯乙烯凝胶通过打破电荷积累稳定性来快速检测机器人碰撞","authors":"Geonwoo Hwang, Jongseok Nam, Minki Kim, David Santiago Diaz Cortes, Ki-Uk Kyung","doi":"10.1002/aisy.202300583","DOIUrl":null,"url":null,"abstract":"Human–robot collaboration (HRC) is effective to improve productivity in industrial fields, based on the robot's fast and precise work and the human's flexible skill. To facilitate the HRC system, the first priority is to ensure safety in the event of accidents, such as collisions between robots and humans. Therefore, a protective and collision-sensitive robot skin, named Gel-Skin is proposed to guarantee the safety in HRC. The Gel-Skin is composed of polyvinyl chloride (PVC) gel, which is a functional material with piezoresistive characteristics and impact absorption capability. In particular, the PVC gel has a distinctive piezoresistive property that the relation between mechanical pressure and electrical resistance is tunable depending on an applied voltage. When a voltage is applied to the PVC gel, the electrical charges are accumulated around the anode and it shows increased piezoresistive sensitivity. In this study, it is verified for the PVC gel to exhibit the 4.78 times higher sensitivity by simply applying a voltage. This novel physical phenomenon enables the Gel-Skin to detect the collision rapidly. Finally, the Gel-Skin is applicated to a real robot system and it is verified that the Gel-Skin can detect a collision and absorb impact to ensure safety.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protective and Collision-Sensitive Gel-Skin: Visco-Elastomeric Polyvinyl Chloride Gel Rapidly Detects Robot Collision by Breaking Electrical Charge Accumulation Stability\",\"authors\":\"Geonwoo Hwang, Jongseok Nam, Minki Kim, David Santiago Diaz Cortes, Ki-Uk Kyung\",\"doi\":\"10.1002/aisy.202300583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human–robot collaboration (HRC) is effective to improve productivity in industrial fields, based on the robot's fast and precise work and the human's flexible skill. To facilitate the HRC system, the first priority is to ensure safety in the event of accidents, such as collisions between robots and humans. Therefore, a protective and collision-sensitive robot skin, named Gel-Skin is proposed to guarantee the safety in HRC. The Gel-Skin is composed of polyvinyl chloride (PVC) gel, which is a functional material with piezoresistive characteristics and impact absorption capability. In particular, the PVC gel has a distinctive piezoresistive property that the relation between mechanical pressure and electrical resistance is tunable depending on an applied voltage. When a voltage is applied to the PVC gel, the electrical charges are accumulated around the anode and it shows increased piezoresistive sensitivity. In this study, it is verified for the PVC gel to exhibit the 4.78 times higher sensitivity by simply applying a voltage. This novel physical phenomenon enables the Gel-Skin to detect the collision rapidly. Finally, the Gel-Skin is applicated to a real robot system and it is verified that the Gel-Skin can detect a collision and absorb impact to ensure safety.\",\"PeriodicalId\":7187,\"journal\":{\"name\":\"Advanced Intelligent Systems\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/aisy.202300583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202300583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Protective and Collision-Sensitive Gel-Skin: Visco-Elastomeric Polyvinyl Chloride Gel Rapidly Detects Robot Collision by Breaking Electrical Charge Accumulation Stability
Human–robot collaboration (HRC) is effective to improve productivity in industrial fields, based on the robot's fast and precise work and the human's flexible skill. To facilitate the HRC system, the first priority is to ensure safety in the event of accidents, such as collisions between robots and humans. Therefore, a protective and collision-sensitive robot skin, named Gel-Skin is proposed to guarantee the safety in HRC. The Gel-Skin is composed of polyvinyl chloride (PVC) gel, which is a functional material with piezoresistive characteristics and impact absorption capability. In particular, the PVC gel has a distinctive piezoresistive property that the relation between mechanical pressure and electrical resistance is tunable depending on an applied voltage. When a voltage is applied to the PVC gel, the electrical charges are accumulated around the anode and it shows increased piezoresistive sensitivity. In this study, it is verified for the PVC gel to exhibit the 4.78 times higher sensitivity by simply applying a voltage. This novel physical phenomenon enables the Gel-Skin to detect the collision rapidly. Finally, the Gel-Skin is applicated to a real robot system and it is verified that the Gel-Skin can detect a collision and absorb impact to ensure safety.