封闭在二维光滑波纹通道中的自推进椭圆形颗粒的传输

IF 2.6 4区 物理与天体物理 Q2 PHYSICS, APPLIED International Journal of Modern Physics B Pub Date : 2024-04-03 DOI:10.1142/s0217979225500468
Bing Wang, Wenfei Wu
{"title":"封闭在二维光滑波纹通道中的自推进椭圆形颗粒的传输","authors":"Bing Wang, Wenfei Wu","doi":"10.1142/s0217979225500468","DOIUrl":null,"url":null,"abstract":"<p>Directed transport of self-propelled ellipsoidal particles confined in a smooth corrugated channel with asymmetric potential and Gaussian colored noise is investigated. Effects of the channel, potential and colored noise on the system are discussed. Large noise intensity in the <i>x</i>-axis direction inhibits the transport in <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mo>−</mo><mi>x</mi></math></span><span></span> and <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mo>+</mo><mi>x</mi></math></span><span></span> directions. The directed transport speed <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>|</mi><mo stretchy=\"false\">〈</mo><mi>V</mi><mo stretchy=\"false\">〉</mo><mi>|</mi></math></span><span></span> has a maximum with increasing noise intensity in the <i>y</i>-axis direction. Proper size of the bottleneck is good for the directed transport of the ellipsoidal particles, but large or small size of bottleneck inhibits this directed transport. The transport reverse phenomenon appears with increasing load and self-propelled speed. Confined spherical particle is easier to produce directed transport than confined needlelike ellipsoid particle.</p>","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"40 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The transport of self-propelled ellipsoidal particles confined in 2D smooth corrugated channel\",\"authors\":\"Bing Wang, Wenfei Wu\",\"doi\":\"10.1142/s0217979225500468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Directed transport of self-propelled ellipsoidal particles confined in a smooth corrugated channel with asymmetric potential and Gaussian colored noise is investigated. Effects of the channel, potential and colored noise on the system are discussed. Large noise intensity in the <i>x</i>-axis direction inhibits the transport in <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>−</mo><mi>x</mi></math></span><span></span> and <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>+</mo><mi>x</mi></math></span><span></span> directions. The directed transport speed <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>|</mi><mo stretchy=\\\"false\\\">〈</mo><mi>V</mi><mo stretchy=\\\"false\\\">〉</mo><mi>|</mi></math></span><span></span> has a maximum with increasing noise intensity in the <i>y</i>-axis direction. Proper size of the bottleneck is good for the directed transport of the ellipsoidal particles, but large or small size of bottleneck inhibits this directed transport. The transport reverse phenomenon appears with increasing load and self-propelled speed. Confined spherical particle is easier to produce directed transport than confined needlelike ellipsoid particle.</p>\",\"PeriodicalId\":14108,\"journal\":{\"name\":\"International Journal of Modern Physics B\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217979225500468\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217979225500468","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了限制在光滑波纹通道中的自推进椭圆形粒子的定向传输,该通道具有非对称电势和高斯彩色噪声。讨论了通道、电势和彩色噪声对系统的影响。x 轴方向上的大噪声强度抑制了 -x 和 +x 方向上的传输。随着 y 轴方向噪声强度的增加,定向传输速度 |〈V〉| 达到最大值。适当的瓶颈尺寸有利于椭圆粒子的定向传输,但过大或过小的瓶颈尺寸会抑制这种定向传输。随着载荷和自推进速度的增加,会出现输送反向现象。密闭的球形颗粒比密闭的针状椭圆形颗粒更容易产生定向传输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The transport of self-propelled ellipsoidal particles confined in 2D smooth corrugated channel

Directed transport of self-propelled ellipsoidal particles confined in a smooth corrugated channel with asymmetric potential and Gaussian colored noise is investigated. Effects of the channel, potential and colored noise on the system are discussed. Large noise intensity in the x-axis direction inhibits the transport in x and +x directions. The directed transport speed |V| has a maximum with increasing noise intensity in the y-axis direction. Proper size of the bottleneck is good for the directed transport of the ellipsoidal particles, but large or small size of bottleneck inhibits this directed transport. The transport reverse phenomenon appears with increasing load and self-propelled speed. Confined spherical particle is easier to produce directed transport than confined needlelike ellipsoid particle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Modern Physics B
International Journal of Modern Physics B 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.80%
发文量
417
审稿时长
3.1 months
期刊介绍: Launched in 1987, the International Journal of Modern Physics B covers the most important aspects and the latest developments in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low dimensional materials. One unique feature of this journal is its review section which contains articles with permanent research value besides the state-of-the-art research work in the relevant subject areas.
期刊最新文献
Möbius group actions in the solvable chimera model On the solutions of space-time fractional CBS and CBS-BK equations describing the dynamics of Riemann wave interaction Application of micropolar fluid model to blood flow through catheterized artery with stenosis and thrombosis Electro-fluid-dynamics (EFD) of soft-bodied organisms swimming through mucus having dilatant, viscous, and pseudo-plastic properties Investigating the effect of oxygen vacancy on electronic, optical, thermoelectric and thermodynamic properties of CeO2 (ceria) for energy and ReRAM applications: A first-principles quantum analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1