{"title":"阳离子双子表面活性剂和非离子表面活性剂混合溶液的胶束化、聚集、相互作用和增溶行为","authors":"İkbal Sarıkaya Yıldız, Selçuk Bilgen, Halide Akbaş","doi":"10.1002/jsde.12755","DOIUrl":null,"url":null,"abstract":"<p>The micellization properties of mixed aqueous solutions of a cationic gemini surfactant (CGS) and Triton X-100, a conventional non-ionic surfactant, with various mole fractions, were determined by measuring the surface tension at different temperatures. Various theoretical models were used to analyze the behavior of this mixed system. The interactions between CGS and Triton X-100 were determined to be non-ideal and synergistic. The calculated interaction parameters (<i>β</i><sup>M</sup>) have negative values at all temperatures and for all mole fractions, showing attractive interactions. It was found that increasing the mole fraction of Triton X-100 significantly increased the synergistic effect (more negative values). Micellar aggregation number (<i>N</i><sub>agg</sub>) values of pure surfactants and their mixtures in different ratios were obtained with the steady-state fluorescence quenching method. Furthermore, the molar solubilization ratio of Sudan III organic dye in all surfactants aqueous systems was obtained using UV–Visible spectrophotometry. At concentrations above critical micelle concentration, the solubility of Sudan III in water was substantially increased linearly for all systems and it was observed that the enhancement was even more significant for mixed surfactant systems.</p>","PeriodicalId":17083,"journal":{"name":"Journal of Surfactants and Detergents","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micellization, aggregation, interaction, and solubilization behaviors of mixed solutions of cationic gemini and nonionic surfactants\",\"authors\":\"İkbal Sarıkaya Yıldız, Selçuk Bilgen, Halide Akbaş\",\"doi\":\"10.1002/jsde.12755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The micellization properties of mixed aqueous solutions of a cationic gemini surfactant (CGS) and Triton X-100, a conventional non-ionic surfactant, with various mole fractions, were determined by measuring the surface tension at different temperatures. Various theoretical models were used to analyze the behavior of this mixed system. The interactions between CGS and Triton X-100 were determined to be non-ideal and synergistic. The calculated interaction parameters (<i>β</i><sup>M</sup>) have negative values at all temperatures and for all mole fractions, showing attractive interactions. It was found that increasing the mole fraction of Triton X-100 significantly increased the synergistic effect (more negative values). Micellar aggregation number (<i>N</i><sub>agg</sub>) values of pure surfactants and their mixtures in different ratios were obtained with the steady-state fluorescence quenching method. Furthermore, the molar solubilization ratio of Sudan III organic dye in all surfactants aqueous systems was obtained using UV–Visible spectrophotometry. At concentrations above critical micelle concentration, the solubility of Sudan III in water was substantially increased linearly for all systems and it was observed that the enhancement was even more significant for mixed surfactant systems.</p>\",\"PeriodicalId\":17083,\"journal\":{\"name\":\"Journal of Surfactants and Detergents\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Surfactants and Detergents\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jsde.12755\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surfactants and Detergents","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jsde.12755","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Micellization, aggregation, interaction, and solubilization behaviors of mixed solutions of cationic gemini and nonionic surfactants
The micellization properties of mixed aqueous solutions of a cationic gemini surfactant (CGS) and Triton X-100, a conventional non-ionic surfactant, with various mole fractions, were determined by measuring the surface tension at different temperatures. Various theoretical models were used to analyze the behavior of this mixed system. The interactions between CGS and Triton X-100 were determined to be non-ideal and synergistic. The calculated interaction parameters (βM) have negative values at all temperatures and for all mole fractions, showing attractive interactions. It was found that increasing the mole fraction of Triton X-100 significantly increased the synergistic effect (more negative values). Micellar aggregation number (Nagg) values of pure surfactants and their mixtures in different ratios were obtained with the steady-state fluorescence quenching method. Furthermore, the molar solubilization ratio of Sudan III organic dye in all surfactants aqueous systems was obtained using UV–Visible spectrophotometry. At concentrations above critical micelle concentration, the solubility of Sudan III in water was substantially increased linearly for all systems and it was observed that the enhancement was even more significant for mixed surfactant systems.
期刊介绍:
Journal of Surfactants and Detergents, a journal of the American Oil Chemists’ Society (AOCS) publishes scientific contributions in the surfactants and detergents area. This includes the basic and applied science of petrochemical and oleochemical surfactants, the development and performance of surfactants in all applications, as well as the development and manufacture of detergent ingredients and their formulation into finished products.