GMDS 和 GMDS-AS1 在癌症进展中不可或缺的作用:岩藻糖基化、信号通路和分子发病机制。

IF 3.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Mini reviews in medicinal chemistry Pub Date : 2024-04-09 DOI:10.2174/0113895575285276240324080234
Ziyan Zhang, Zhuowei Wang, Hong Fan, Jiayi Li, Jiaqi Ding, Gang Zhou, Chengfu Yuan
{"title":"GMDS 和 GMDS-AS1 在癌症进展中不可或缺的作用:岩藻糖基化、信号通路和分子发病机制。","authors":"Ziyan Zhang, Zhuowei Wang, Hong Fan, Jiayi Li, Jiaqi Ding, Gang Zhou, Chengfu Yuan","doi":"10.2174/0113895575285276240324080234","DOIUrl":null,"url":null,"abstract":": Fucosylation is facilitated by converting GDP-mannose to GDP-4-keto-6-deoxymannose, which GDP-mannose 4,6-dehydratase, a crucial enzyme in the route, carries out. One of the most prevalent glycosylation alterations linked to cancer has reportedly been identified as fucosylation. There is mounting evidence that GMDS is intimately linked to the onset and spread of cancer. Furthermore, the significance of long-chain non-coding RNAs in the development and metastasis of cancer is becoming more well-recognized, and the regulatory mechanism of lncRNAs has emerged as a prominent area of study in the biological sciences. GMDS-AS1, an antisense RNA of GMDS, was discovered to have the potential to be an oncogene. We have acquired and analyzed relevant data to understand better how GMDS-AS1 and its lncRNA work physiologically and in tumorigenesis and progression. Additionally, we have looked into the possible effects of these molecules on cancer treatment approaches and patient outcomes. The physiological roles and putative processes of GMDS and lncRNA GMDS-AS1 throughout the development and progression of tumors have been assembled and examined. We also examined how these chemicals might affect patient prognosis and cancer therapy approaches. GMDS and GMDS-AS1 were determined to be research subjects by searching and gathering pertinent studies using the PubMed system. The analysis of these research articles demonstrated the close relationship between GMDS and GMDS-AS1 and tumorigenesis and the factors that influence them. GMDS plays a vital role in regulating fucosylation. The related antisense gene GMDS-AS1 affects the biological behaviors of cancer cells through multiple pathways, including the key processes of proliferation, migration, invasion, and apoptosis, providing potential biomarkers and therapeutic targets for cancer treatment and prognosis assessment.","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":"2014 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Indispensable Roles of GMDS and GMDS-AS1 in the Advancement of Cancer: Fucosylation, Signal Pathway and Molecular Pathogenesis.\",\"authors\":\"Ziyan Zhang, Zhuowei Wang, Hong Fan, Jiayi Li, Jiaqi Ding, Gang Zhou, Chengfu Yuan\",\"doi\":\"10.2174/0113895575285276240324080234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Fucosylation is facilitated by converting GDP-mannose to GDP-4-keto-6-deoxymannose, which GDP-mannose 4,6-dehydratase, a crucial enzyme in the route, carries out. One of the most prevalent glycosylation alterations linked to cancer has reportedly been identified as fucosylation. There is mounting evidence that GMDS is intimately linked to the onset and spread of cancer. Furthermore, the significance of long-chain non-coding RNAs in the development and metastasis of cancer is becoming more well-recognized, and the regulatory mechanism of lncRNAs has emerged as a prominent area of study in the biological sciences. GMDS-AS1, an antisense RNA of GMDS, was discovered to have the potential to be an oncogene. We have acquired and analyzed relevant data to understand better how GMDS-AS1 and its lncRNA work physiologically and in tumorigenesis and progression. Additionally, we have looked into the possible effects of these molecules on cancer treatment approaches and patient outcomes. The physiological roles and putative processes of GMDS and lncRNA GMDS-AS1 throughout the development and progression of tumors have been assembled and examined. We also examined how these chemicals might affect patient prognosis and cancer therapy approaches. GMDS and GMDS-AS1 were determined to be research subjects by searching and gathering pertinent studies using the PubMed system. The analysis of these research articles demonstrated the close relationship between GMDS and GMDS-AS1 and tumorigenesis and the factors that influence them. GMDS plays a vital role in regulating fucosylation. The related antisense gene GMDS-AS1 affects the biological behaviors of cancer cells through multiple pathways, including the key processes of proliferation, migration, invasion, and apoptosis, providing potential biomarkers and therapeutic targets for cancer treatment and prognosis assessment.\",\"PeriodicalId\":18548,\"journal\":{\"name\":\"Mini reviews in medicinal chemistry\",\"volume\":\"2014 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mini reviews in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113895575285276240324080234\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mini reviews in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113895575285276240324080234","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

:通过将 GDP-甘露糖转化为 GDP-4-酮-6-脱氧甘露糖,促进了岩藻糖基化,GDP-甘露糖 4,6-脱水酶是这一过程中的关键酶。据报道,与癌症有关的最普遍的糖基化改变之一是岩藻糖基化。越来越多的证据表明,GMDS 与癌症的发病和扩散密切相关。此外,长链非编码 RNA 在癌症发生和转移过程中的重要性也日益得到认可,lncRNA 的调控机制已成为生物科学研究的一个突出领域。GMDS的反义RNA GMDS-AS1被发现可能是一种癌基因。我们获取并分析了相关数据,以更好地了解 GMDS-AS1 及其 lncRNA 在生理上以及肿瘤发生和发展过程中的作用。此外,我们还研究了这些分子对癌症治疗方法和患者预后可能产生的影响。我们汇集并研究了 GMDS 和 lncRNA GMDS-AS1 在肿瘤发生和发展过程中的生理作用和假定过程。我们还研究了这些化学物质如何影响患者预后和癌症治疗方法。通过使用 PubMed 系统搜索和收集相关研究,确定 GMDS 和 GMDS-AS1 为研究对象。对这些研究文章的分析表明了 GMDS 和 GMDS-AS1 与肿瘤发生之间的密切关系以及影响它们的因素。GMDS 在调节岩藻糖基化方面发挥着重要作用。相关的反义基因 GMDS-AS1 通过多种途径影响癌细胞的生物学行为,包括增殖、迁移、侵袭和凋亡等关键过程,为癌症治疗和预后评估提供了潜在的生物标志物和治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Indispensable Roles of GMDS and GMDS-AS1 in the Advancement of Cancer: Fucosylation, Signal Pathway and Molecular Pathogenesis.
: Fucosylation is facilitated by converting GDP-mannose to GDP-4-keto-6-deoxymannose, which GDP-mannose 4,6-dehydratase, a crucial enzyme in the route, carries out. One of the most prevalent glycosylation alterations linked to cancer has reportedly been identified as fucosylation. There is mounting evidence that GMDS is intimately linked to the onset and spread of cancer. Furthermore, the significance of long-chain non-coding RNAs in the development and metastasis of cancer is becoming more well-recognized, and the regulatory mechanism of lncRNAs has emerged as a prominent area of study in the biological sciences. GMDS-AS1, an antisense RNA of GMDS, was discovered to have the potential to be an oncogene. We have acquired and analyzed relevant data to understand better how GMDS-AS1 and its lncRNA work physiologically and in tumorigenesis and progression. Additionally, we have looked into the possible effects of these molecules on cancer treatment approaches and patient outcomes. The physiological roles and putative processes of GMDS and lncRNA GMDS-AS1 throughout the development and progression of tumors have been assembled and examined. We also examined how these chemicals might affect patient prognosis and cancer therapy approaches. GMDS and GMDS-AS1 were determined to be research subjects by searching and gathering pertinent studies using the PubMed system. The analysis of these research articles demonstrated the close relationship between GMDS and GMDS-AS1 and tumorigenesis and the factors that influence them. GMDS plays a vital role in regulating fucosylation. The related antisense gene GMDS-AS1 affects the biological behaviors of cancer cells through multiple pathways, including the key processes of proliferation, migration, invasion, and apoptosis, providing potential biomarkers and therapeutic targets for cancer treatment and prognosis assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
0.00%
发文量
231
审稿时长
6 months
期刊介绍: The aim of Mini-Reviews in Medicinal Chemistry is to publish short reviews on the important recent developments in medicinal chemistry and allied disciplines. Mini-Reviews in Medicinal Chemistry covers all areas of medicinal chemistry including developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, drug targets, and natural product research and structure-activity relationship studies. Mini-Reviews in Medicinal Chemistry is an essential journal for every medicinal and pharmaceutical chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
期刊最新文献
Promising Inhibitors of Endocannabinoid Degrading Enzymes Sharing a Carbamate Scaffold. Sulfonated Penta-Galloyl Glucose (SPGG): The Pharmacological Effects of Promiscuous Glycosaminoglycan Small Molecule Mimetic. Comprehensive Insight into Green Synthesis Approaches, Structural Activity Relationship, and Therapeutic Potential of Pyrazolic Chalcone Derivative. Olaparib: A Chemosensitizer for the Treatment of Glioblastoma. Energy Metabolism Behavior and Response to Microenvironmental Factors of the Experimental Cancer Cell Models Differ From That of Actual Human Tumors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1