{"title":"利用对比学习和邻域挖掘进行语义谱聚类","authors":"Nongxiao Wang, Xulun Ye, Jieyu Zhao, Qing Wang","doi":"10.1007/s11063-024-11597-x","DOIUrl":null,"url":null,"abstract":"<p>Deep spectral clustering techniques are considered one of the most efficient clustering algorithms in data mining field. The similarity between instances and the disparity among classes are two critical factors in clustering fields. However, most current deep spectral clustering approaches do not sufficiently take them both into consideration. To tackle the above issue, we propose Semantic Spectral clustering with Contrastive learning and Neighbor mining (SSCN) framework, which performs instance-level pulling and cluster-level pushing cooperatively. Specifically, we obtain the semantic feature embedding using an unsupervised contrastive learning model. Next, we obtain the nearest neighbors partially and globally, and the neighbors along with data augmentation information enhance their effectiveness collaboratively on the instance level as well as the cluster level. The spectral constraint is applied by orthogonal layers to satisfy conventional spectral clustering. Extensive experiments demonstrate the superiority of our proposed frame of spectral clustering.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"120 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic Spectral Clustering with Contrastive Learning and Neighbor Mining\",\"authors\":\"Nongxiao Wang, Xulun Ye, Jieyu Zhao, Qing Wang\",\"doi\":\"10.1007/s11063-024-11597-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deep spectral clustering techniques are considered one of the most efficient clustering algorithms in data mining field. The similarity between instances and the disparity among classes are two critical factors in clustering fields. However, most current deep spectral clustering approaches do not sufficiently take them both into consideration. To tackle the above issue, we propose Semantic Spectral clustering with Contrastive learning and Neighbor mining (SSCN) framework, which performs instance-level pulling and cluster-level pushing cooperatively. Specifically, we obtain the semantic feature embedding using an unsupervised contrastive learning model. Next, we obtain the nearest neighbors partially and globally, and the neighbors along with data augmentation information enhance their effectiveness collaboratively on the instance level as well as the cluster level. The spectral constraint is applied by orthogonal layers to satisfy conventional spectral clustering. Extensive experiments demonstrate the superiority of our proposed frame of spectral clustering.</p>\",\"PeriodicalId\":51144,\"journal\":{\"name\":\"Neural Processing Letters\",\"volume\":\"120 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11063-024-11597-x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11597-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Semantic Spectral Clustering with Contrastive Learning and Neighbor Mining
Deep spectral clustering techniques are considered one of the most efficient clustering algorithms in data mining field. The similarity between instances and the disparity among classes are two critical factors in clustering fields. However, most current deep spectral clustering approaches do not sufficiently take them both into consideration. To tackle the above issue, we propose Semantic Spectral clustering with Contrastive learning and Neighbor mining (SSCN) framework, which performs instance-level pulling and cluster-level pushing cooperatively. Specifically, we obtain the semantic feature embedding using an unsupervised contrastive learning model. Next, we obtain the nearest neighbors partially and globally, and the neighbors along with data augmentation information enhance their effectiveness collaboratively on the instance level as well as the cluster level. The spectral constraint is applied by orthogonal layers to satisfy conventional spectral clustering. Extensive experiments demonstrate the superiority of our proposed frame of spectral clustering.
期刊介绍:
Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches.
The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters