用于社交网络分析的深度自监督属性图聚类法

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Processing Letters Pub Date : 2024-04-01 DOI:10.1007/s11063-024-11596-y
Hu Lu, Haotian Hong, Xia Geng
{"title":"用于社交网络分析的深度自监督属性图聚类法","authors":"Hu Lu, Haotian Hong, Xia Geng","doi":"10.1007/s11063-024-11596-y","DOIUrl":null,"url":null,"abstract":"<p>Deep graph clustering is an unsupervised learning task that divides nodes in a graph into disjoint regions with the help of graph auto-encoders. Currently, such methods have several problems, as follows. (1) The deep graph clustering method does not effectively utilize the generated pseudo-labels, resulting in sub-optimal model training results. (2) Each cluster has a different confidence level, which affects the reliability of the pseudo-label. To address these problems, we propose a Deep Self-supervised Attribute Graph Clustering model (DSAGC) to fully leverage the information of the data itself. We divide the proposed model into two parts: an upstream model and a downstream model. In the upstream model, we use the pseudo-label information generated by spectral clustering to form a new high-confidence distribution with which to optimize the model for a higher performance. We also propose a new reliable sample selection mechanism to obtain more reliable samples for downstream tasks. In the downstream model, we only use the reliable samples and the pseudo-label for the semi-supervised classification task without the true label. We compare the proposed method with 17 related methods on four publicly available citation network datasets, and the proposed method generally outperforms most existing methods in three performance metrics. By conducting a large number of ablative experiments, we validate the effectiveness of the proposed method.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"89 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Self-Supervised Attributed Graph Clustering for Social Network Analysis\",\"authors\":\"Hu Lu, Haotian Hong, Xia Geng\",\"doi\":\"10.1007/s11063-024-11596-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deep graph clustering is an unsupervised learning task that divides nodes in a graph into disjoint regions with the help of graph auto-encoders. Currently, such methods have several problems, as follows. (1) The deep graph clustering method does not effectively utilize the generated pseudo-labels, resulting in sub-optimal model training results. (2) Each cluster has a different confidence level, which affects the reliability of the pseudo-label. To address these problems, we propose a Deep Self-supervised Attribute Graph Clustering model (DSAGC) to fully leverage the information of the data itself. We divide the proposed model into two parts: an upstream model and a downstream model. In the upstream model, we use the pseudo-label information generated by spectral clustering to form a new high-confidence distribution with which to optimize the model for a higher performance. We also propose a new reliable sample selection mechanism to obtain more reliable samples for downstream tasks. In the downstream model, we only use the reliable samples and the pseudo-label for the semi-supervised classification task without the true label. We compare the proposed method with 17 related methods on four publicly available citation network datasets, and the proposed method generally outperforms most existing methods in three performance metrics. By conducting a large number of ablative experiments, we validate the effectiveness of the proposed method.</p>\",\"PeriodicalId\":51144,\"journal\":{\"name\":\"Neural Processing Letters\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11063-024-11596-y\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11596-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

深度图形聚类是一种无监督学习任务,它借助图形自动编码器将图形中的节点划分为不相连的区域。目前,这类方法存在以下几个问题。(1) 深度图聚类方法不能有效利用生成的伪标签,导致模型训练结果不理想。(2)每个聚类的置信度不同,影响了伪标签的可靠性。针对这些问题,我们提出了一种深度自监督属性图聚类模型(DSAGC),以充分利用数据本身的信息。我们将提出的模型分为两个部分:上游模型和下游模型。在上游模型中,我们利用光谱聚类产生的伪标签信息形成新的高置信度分布,并以此优化模型以获得更高的性能。我们还提出了一种新的可靠样本选择机制,为下游任务获取更可靠的样本。在下游模型中,我们只使用可靠样本和伪标签进行半监督分类任务,而不使用真实标签。我们在四个公开的引文网络数据集上比较了所提出的方法和 17 种相关方法,结果发现所提出的方法在三个性能指标上普遍优于大多数现有方法。通过进行大量的消减实验,我们验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Self-Supervised Attributed Graph Clustering for Social Network Analysis

Deep graph clustering is an unsupervised learning task that divides nodes in a graph into disjoint regions with the help of graph auto-encoders. Currently, such methods have several problems, as follows. (1) The deep graph clustering method does not effectively utilize the generated pseudo-labels, resulting in sub-optimal model training results. (2) Each cluster has a different confidence level, which affects the reliability of the pseudo-label. To address these problems, we propose a Deep Self-supervised Attribute Graph Clustering model (DSAGC) to fully leverage the information of the data itself. We divide the proposed model into two parts: an upstream model and a downstream model. In the upstream model, we use the pseudo-label information generated by spectral clustering to form a new high-confidence distribution with which to optimize the model for a higher performance. We also propose a new reliable sample selection mechanism to obtain more reliable samples for downstream tasks. In the downstream model, we only use the reliable samples and the pseudo-label for the semi-supervised classification task without the true label. We compare the proposed method with 17 related methods on four publicly available citation network datasets, and the proposed method generally outperforms most existing methods in three performance metrics. By conducting a large number of ablative experiments, we validate the effectiveness of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Processing Letters
Neural Processing Letters 工程技术-计算机:人工智能
CiteScore
4.90
自引率
12.90%
发文量
392
审稿时长
2.8 months
期刊介绍: Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches. The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters
期刊最新文献
Label-Only Membership Inference Attack Based on Model Explanation A Robot Ground Medium Classification Algorithm Based on Feature Fusion and Adaptive Spatio-Temporal Cascade Networks A Deep Learning-Based Hybrid CNN-LSTM Model for Location-Aware Web Service Recommendation A Clustering Pruning Method Based on Multidimensional Channel Information A Neural Network-Based Poisson Solver for Fluid Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1