Arul Edwin Raj A, Nabihah Binti Ahmad, Ananiah Durai S
{"title":"通过优化驱动的多光谱伽马校正(ODMGC)诊断乳腺癌","authors":"Arul Edwin Raj A, Nabihah Binti Ahmad, Ananiah Durai S","doi":"10.1002/acs.3798","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The Optimization-Driven Multispectral Gamma Correction (ODMGC) algorithm overcomes challenges in gathering subtle information and detecting cancer in dense breast thermograms. This algorithm enhances the accuracy of true positives and true negatives while minimising false negatives and false positives. The ODMGC involves a multi-step optimisation process that categorises grey-scale images of breast thermograms based on mean brightness. Then, based on the grey levels of the pixels, we grouped each categorisation into sub-regions. Followed by each group has undergone individually optimised base enhancement. This process enhances the contrast between cancerous and normal tissues, eliminates over- and under-enhancement, and supports breast tumour diagnosis. The optimised-based enhancement images serve as a reference point for the histogram specification of the V component of the thermograms in the HSV (Hue, Saturation, and Value) model. Further, we evaluated the proposed model using both qualitative and quantitative measures. Finally, using dimension-reduced significant Grey-Level Co-occurrence Matrix (GLCM) features, we validated the results with a Random Forest (RF) classifier. The algorithm was successfully implemented in MATLAB 2020a, and the classifier was developed in Jupyter Notebook using Python. The subjective comparison confirmed the proposed method's superior resolution in normal and malignant cases. The classifier results showed an accuracy of 96.4%, sensitivity of 98.1%, and specificity of 96.9%.</p>\n </div>","PeriodicalId":50347,"journal":{"name":"International Journal of Adaptive Control and Signal Processing","volume":"38 6","pages":"2178-2199"},"PeriodicalIF":3.9000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breast cancer diagnosis through an optimization-driven multispectral gamma correction (ODMGC)\",\"authors\":\"Arul Edwin Raj A, Nabihah Binti Ahmad, Ananiah Durai S\",\"doi\":\"10.1002/acs.3798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The Optimization-Driven Multispectral Gamma Correction (ODMGC) algorithm overcomes challenges in gathering subtle information and detecting cancer in dense breast thermograms. This algorithm enhances the accuracy of true positives and true negatives while minimising false negatives and false positives. The ODMGC involves a multi-step optimisation process that categorises grey-scale images of breast thermograms based on mean brightness. Then, based on the grey levels of the pixels, we grouped each categorisation into sub-regions. Followed by each group has undergone individually optimised base enhancement. This process enhances the contrast between cancerous and normal tissues, eliminates over- and under-enhancement, and supports breast tumour diagnosis. The optimised-based enhancement images serve as a reference point for the histogram specification of the V component of the thermograms in the HSV (Hue, Saturation, and Value) model. Further, we evaluated the proposed model using both qualitative and quantitative measures. Finally, using dimension-reduced significant Grey-Level Co-occurrence Matrix (GLCM) features, we validated the results with a Random Forest (RF) classifier. The algorithm was successfully implemented in MATLAB 2020a, and the classifier was developed in Jupyter Notebook using Python. The subjective comparison confirmed the proposed method's superior resolution in normal and malignant cases. The classifier results showed an accuracy of 96.4%, sensitivity of 98.1%, and specificity of 96.9%.</p>\\n </div>\",\"PeriodicalId\":50347,\"journal\":{\"name\":\"International Journal of Adaptive Control and Signal Processing\",\"volume\":\"38 6\",\"pages\":\"2178-2199\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Adaptive Control and Signal Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/acs.3798\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adaptive Control and Signal Processing","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/acs.3798","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Breast cancer diagnosis through an optimization-driven multispectral gamma correction (ODMGC)
The Optimization-Driven Multispectral Gamma Correction (ODMGC) algorithm overcomes challenges in gathering subtle information and detecting cancer in dense breast thermograms. This algorithm enhances the accuracy of true positives and true negatives while minimising false negatives and false positives. The ODMGC involves a multi-step optimisation process that categorises grey-scale images of breast thermograms based on mean brightness. Then, based on the grey levels of the pixels, we grouped each categorisation into sub-regions. Followed by each group has undergone individually optimised base enhancement. This process enhances the contrast between cancerous and normal tissues, eliminates over- and under-enhancement, and supports breast tumour diagnosis. The optimised-based enhancement images serve as a reference point for the histogram specification of the V component of the thermograms in the HSV (Hue, Saturation, and Value) model. Further, we evaluated the proposed model using both qualitative and quantitative measures. Finally, using dimension-reduced significant Grey-Level Co-occurrence Matrix (GLCM) features, we validated the results with a Random Forest (RF) classifier. The algorithm was successfully implemented in MATLAB 2020a, and the classifier was developed in Jupyter Notebook using Python. The subjective comparison confirmed the proposed method's superior resolution in normal and malignant cases. The classifier results showed an accuracy of 96.4%, sensitivity of 98.1%, and specificity of 96.9%.
期刊介绍:
The International Journal of Adaptive Control and Signal Processing is concerned with the design, synthesis and application of estimators or controllers where adaptive features are needed to cope with uncertainties.Papers on signal processing should also have some relevance to adaptive systems. The journal focus is on model based control design approaches rather than heuristic or rule based control design methods. All papers will be expected to include significant novel material.
Both the theory and application of adaptive systems and system identification are areas of interest. Papers on applications can include problems in the implementation of algorithms for real time signal processing and control. The stability, convergence, robustness and numerical aspects of adaptive algorithms are also suitable topics. The related subjects of controller tuning, filtering, networks and switching theory are also of interest. Principal areas to be addressed include:
Auto-Tuning, Self-Tuning and Model Reference Adaptive Controllers
Nonlinear, Robust and Intelligent Adaptive Controllers
Linear and Nonlinear Multivariable System Identification and Estimation
Identification of Linear Parameter Varying, Distributed and Hybrid Systems
Multiple Model Adaptive Control
Adaptive Signal processing Theory and Algorithms
Adaptation in Multi-Agent Systems
Condition Monitoring Systems
Fault Detection and Isolation Methods
Fault Detection and Isolation Methods
Fault-Tolerant Control (system supervision and diagnosis)
Learning Systems and Adaptive Modelling
Real Time Algorithms for Adaptive Signal Processing and Control
Adaptive Signal Processing and Control Applications
Adaptive Cloud Architectures and Networking
Adaptive Mechanisms for Internet of Things
Adaptive Sliding Mode Control.