用于对称分布均值估计的灵活维度 L 统计量

IF 1.2 3区 数学 Q2 STATISTICS & PROBABILITY Statistical Papers Pub Date : 2024-04-06 DOI:10.1007/s00362-024-01547-z
Juan Baz, Diego García-Zamora, Irene Díaz, Susana Montes, Luis Martínez
{"title":"用于对称分布均值估计的灵活维度 L 统计量","authors":"Juan Baz, Diego García-Zamora, Irene Díaz, Susana Montes, Luis Martínez","doi":"10.1007/s00362-024-01547-z","DOIUrl":null,"url":null,"abstract":"<p>Estimating the mean of a population is a recurrent topic in statistics because of its multiple applications. If previous data is available, or the distribution of the deviation between the measurements and the mean is known, it is possible to perform such estimation by using L-statistics, whose optimal linear coefficients, typically referred to as weights, are derived from a minimization of the mean squared error. However, such optimal weights can only manage sample sizes equal to the one used to derive them, while in real-world scenarios this size might slightly change. Therefore, this paper proposes a method to overcome such a limitation and derive approximations of flexible-dimensional optimal weights. To do so, a parametric family of functions based on extreme value reductions and amplifications is proposed to be adjusted to the cumulative optimal weights of a given sample from a symmetric distribution. Then, the application of Yager’s method to derive weights for ordered weighted average (OWA) operators allows computing the approximate optimal weights for sample sizes close to the original one. This method is justified from the theoretical point of view by proving a convergence result regarding the cumulative weights obtained for different sample sizes. Finally, the practical performance of the theoretical results is shown for several classical symmetric distributions.</p>","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"7 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible-dimensional L-statistic for mean estimation of symmetric distributions\",\"authors\":\"Juan Baz, Diego García-Zamora, Irene Díaz, Susana Montes, Luis Martínez\",\"doi\":\"10.1007/s00362-024-01547-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Estimating the mean of a population is a recurrent topic in statistics because of its multiple applications. If previous data is available, or the distribution of the deviation between the measurements and the mean is known, it is possible to perform such estimation by using L-statistics, whose optimal linear coefficients, typically referred to as weights, are derived from a minimization of the mean squared error. However, such optimal weights can only manage sample sizes equal to the one used to derive them, while in real-world scenarios this size might slightly change. Therefore, this paper proposes a method to overcome such a limitation and derive approximations of flexible-dimensional optimal weights. To do so, a parametric family of functions based on extreme value reductions and amplifications is proposed to be adjusted to the cumulative optimal weights of a given sample from a symmetric distribution. Then, the application of Yager’s method to derive weights for ordered weighted average (OWA) operators allows computing the approximate optimal weights for sample sizes close to the original one. This method is justified from the theoretical point of view by proving a convergence result regarding the cumulative weights obtained for different sample sizes. Finally, the practical performance of the theoretical results is shown for several classical symmetric distributions.</p>\",\"PeriodicalId\":51166,\"journal\":{\"name\":\"Statistical Papers\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Papers\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00362-024-01547-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Papers","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00362-024-01547-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

由于应用广泛,估计群体的平均值是统计学中经常出现的话题。如果有以前的数据,或已知测量值与均值之间偏差的分布,就可以使用 L 统计法进行估计,其最优线性系数(通常称为权重)是通过最小化均方误差得出的。然而,这种最优权重只能管理与用于推导权重的样本大小相等的样本,而在现实世界中,样本大小可能会略有变化。因此,本文提出了一种方法来克服这种限制,并推导出灵活维度最优权重的近似值。为此,本文提出了一个基于极值还原和放大的参数函数族,用于调整对称分布中给定样本的累积最优权重。然后,应用雅格方法得出有序加权平均算子(OWA)的权重,从而计算出接近原始样本大小的近似最优权重。通过证明不同样本量下获得的累积权重的收敛结果,从理论角度证明了这一方法的合理性。最后,针对几个经典的对称分布,展示了理论结果的实际表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flexible-dimensional L-statistic for mean estimation of symmetric distributions

Estimating the mean of a population is a recurrent topic in statistics because of its multiple applications. If previous data is available, or the distribution of the deviation between the measurements and the mean is known, it is possible to perform such estimation by using L-statistics, whose optimal linear coefficients, typically referred to as weights, are derived from a minimization of the mean squared error. However, such optimal weights can only manage sample sizes equal to the one used to derive them, while in real-world scenarios this size might slightly change. Therefore, this paper proposes a method to overcome such a limitation and derive approximations of flexible-dimensional optimal weights. To do so, a parametric family of functions based on extreme value reductions and amplifications is proposed to be adjusted to the cumulative optimal weights of a given sample from a symmetric distribution. Then, the application of Yager’s method to derive weights for ordered weighted average (OWA) operators allows computing the approximate optimal weights for sample sizes close to the original one. This method is justified from the theoretical point of view by proving a convergence result regarding the cumulative weights obtained for different sample sizes. Finally, the practical performance of the theoretical results is shown for several classical symmetric distributions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Papers
Statistical Papers 数学-统计学与概率论
CiteScore
2.80
自引率
7.70%
发文量
95
审稿时长
6-12 weeks
期刊介绍: The journal Statistical Papers addresses itself to all persons and organizations that have to deal with statistical methods in their own field of work. It attempts to provide a forum for the presentation and critical assessment of statistical methods, in particular for the discussion of their methodological foundations as well as their potential applications. Methods that have broad applications will be preferred. However, special attention is given to those statistical methods which are relevant to the economic and social sciences. In addition to original research papers, readers will find survey articles, short notes, reports on statistical software, problem section, and book reviews.
期刊最新文献
The distribution of power-related random variables (and their use in clinical trials) The cost of sequential adaptation and the lower bound for mean squared error Nested strong orthogonal arrays Tests for time-varying coefficient spatial autoregressive panel data model with fixed effects On the consistency of supervised learning with missing values
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1